Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1985 May;27(5):727–732. doi: 10.1128/aac.27.5.727

Covalent binding of moxalactam to cephalosporinase of Citrobacter freundii.

K Murakami, T Yoshida
PMCID: PMC180142  PMID: 3874595

Abstract

The inhibition of Citrobacter freundii cephalosporinase activity by moxalactam is shown to be due to the formation of a transiently stable covalent complex, probably acyl enzyme. The covalent complex formed was identified by coelution of [14C] moxalactam with the enzyme by using Sephadex G-25 gel filtration in the presence of 5.7 M guanidine hydrochloride and by analytical isoelectric focusing. Both the side-chain carboxyl group and the 7 alpha-methoxy group of moxalactam were necessary to stabilize the complex. Moxalactam is racemic with respect to the alpha carbon of the 7 beta-acylamino side chain, and the complex with the R epimer (half-life, 4.6 min) decomposed much more rapidly than that formed with the S epimer (half-life, 130 min). For other beta-lactam antibiotics that were stable to beta-lactamase, the half-lives of enzyme-antibiotic complexes were less than 4 min.

Full text

PDF
727

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. G., Pratt R. F. Pre-steady state beta-lactamase kinetics. Observation of a covalent intermediate during turnover of a fluorescent cephalosporin by the beta-lactamase of STaphylococcus aureus PC1. J Biol Chem. 1981 Nov 25;256(22):11401–11404. [PubMed] [Google Scholar]
  2. Bush K., Freudenberger J. S., Sykes R. B. Interaction of azthreonam and related monobactams with beta-lactamases from gram-negative bacteria. Antimicrob Agents Chemother. 1982 Sep;22(3):414–420. doi: 10.1128/aac.22.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charnas R. L., Fisher J., Knowles J. R. Chemical studies on the inactivation of Escherichia coli RTEM beta-lactamase by clavulanic acid. Biochemistry. 1978 May 30;17(11):2185–2189. doi: 10.1021/bi00604a025. [DOI] [PubMed] [Google Scholar]
  4. Charnas R. L., Knowles J. R. Inhibition of the RTEM beta-lactamase from Escherichia coli. Interaction of enzyme with derivatives of olivanic acid. Biochemistry. 1981 May 12;20(10):2732–2737. doi: 10.1021/bi00513a005. [DOI] [PubMed] [Google Scholar]
  5. Citri N., Pollock M. R. The biochemistry and function of beta-lactamase (penicillinase). Adv Enzymol Relat Areas Mol Biol. 1966;28:237–323. doi: 10.1002/9780470122730.ch4. [DOI] [PubMed] [Google Scholar]
  6. English A. R., Retsema J. A., Girard A. E., Lynch J. E., Barth W. E. CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob Agents Chemother. 1978 Sep;14(3):414–419. doi: 10.1128/aac.14.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fisher J., Belasco J. G., Khosla S., Knowles J. R. beta-Lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. Biochemistry. 1980 Jun 24;19(13):2895–2901. doi: 10.1021/bi00554a012. [DOI] [PubMed] [Google Scholar]
  8. Konaka R., Kuruma K., Nishimura R., Kimura Y., Yoshida T. High-performance liquid chromatographic analysis of a new beta-lactam antibiotic, 6059-S (moxalactam). J Chromatogr. 1981 Sep 11;225(1):169–178. doi: 10.1016/s0378-4347(00)80256-x. [DOI] [PubMed] [Google Scholar]
  9. Murakami K., Doi M., Yoshida T. Asparenomycins A, B and C, new carbapenem antibiotics. V. Inhibition of beta-lactamases. J Antibiot (Tokyo) 1982 Jan;35(1):39–45. doi: 10.7164/antibiotics.35.39. [DOI] [PubMed] [Google Scholar]
  10. Murakami K., Yoshida T. Role of the 7 alpha-methoxy and side-chain carboxyl of moxalactam in beta-lactamase stability and antibacterial activity. Antimicrob Agents Chemother. 1981 Jan;19(1):1–7. doi: 10.1128/aac.19.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pratt R. F., Loosemore M. J. 6-beta-bromopenicillanic acid, a potent beta-lactamase inhibitor. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4145–4149. doi: 10.1073/pnas.75.9.4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Richmond M. H., Sykes R. B. The beta-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol. 1973;9:31–88. doi: 10.1016/s0065-2911(08)60376-8. [DOI] [PubMed] [Google Scholar]
  13. Richmond M. H. The beta-lactamase stability of a novel beta-lactam antibiotic containing a 7 alpha-methoxyoxacephem nucleus. J Antimicrob Chemother. 1980 Jul;6(4):445–453. doi: 10.1093/jac/6.4.445. [DOI] [PubMed] [Google Scholar]
  14. Sanders C. C. Inducible beta-lactamases and non-hydrolytic resistance mechanisms. J Antimicrob Chemother. 1984 Jan;13(1):1–3. doi: 10.1093/jac/13.1.1. [DOI] [PubMed] [Google Scholar]
  15. Seeberg A. H., Tolxdorff-Neutzling R. M., Wiedemann B. Chromosomal beta-lactamases of Enterobacter cloacae are responsible for resistance to third-generation cephalosporins. Antimicrob Agents Chemother. 1983 Jun;23(6):918–925. doi: 10.1128/aac.23.6.918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shoji J., Hinoo H., Sakazaki R., Tsuji N., Nagashima K., Matsumoto K., Takahashi Y., Kozuki S., Hattori T., Kondo E. Asparenomycins A, B and C, new carbapenem antibiotics. II. Isolation and chemical characterization. J Antibiot (Tokyo) 1982 Jan;35(1):15–23. doi: 10.7164/antibiotics.35.15. [DOI] [PubMed] [Google Scholar]
  17. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  18. Then R. L., Angehrn P. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism. Antimicrob Agents Chemother. 1982 May;21(5):711–717. doi: 10.1128/aac.21.5.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wise R., Wills P. J., Bedford K. A. Epimers of moxalactam: in vitro comparison of activity and stability. Antimicrob Agents Chemother. 1981 Jul;20(1):30–32. doi: 10.1128/aac.20.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yamamoto T., Yokota T. Beta-lactamase-directed barrier for penicillins of Escherichia coli carrying R plasmids. Antimicrob Agents Chemother. 1977 Jun;11(6):936–940. doi: 10.1128/aac.11.6.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yoshida T., Matsuura S., Mayama M., Kameda Y., Kuwahara S. Moxalactam (6059-S), a novel 1-oxa-beta-lactam with an expanded antibacterial spectrum: laboratory evaluation. Antimicrob Agents Chemother. 1980 Mar;17(3):302–312. doi: 10.1128/aac.17.3.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yoshida T. Structural requirements for antibacterial activity and beta-lactamase stability of 7 beta-arylmalonylamino-7 alpha-methoxy-1-oxacephems. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):231–237. doi: 10.1098/rstb.1980.0041. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES