Abstract
Autosomal dominant myotonia congenita and autosomal recessive generalized myotonia (GM) are genetic disorders characterized by the symptom of myotonia, which is based on an electrical instability of the muscle fiber membrane. Recently, these two phenotypes have been associated with mutations in the major muscle chloride channel gene CLCN1 on human chromosome 7q35. We have systematically screened the open reading frame of the CLCN1 gene for mutations by SSC analysis (SSCA) in a panel of 24 families and 17 single unrelated patients with human myotonia. By direct sequencing of aberrant SSCA conformers were revealed 15 different mutations in a total of 18 unrelated families and 13 single patients. Of these, 10 were novel (7 missense mutations, 2 mutations leading to frameshift, and 1 mutation predicted to affect normal splicing). In our overall sample of 94 GM chromosomes we were able to detect 48 (51%) mutant GM alleles. Three mutations (F413C), R894X, and a 14-bp deletion in exon 13) account for 32% of the GM chromosomes in the German population. Our finding that A437T is probably a polymorphism is in contrast to a recent report that the recessive phenotype GM is associated with this amino acid change. We also demonstrate that the R894X mutation may act as a recessive or a dominant mutation in the CLCN1 gene, probably depending on the genetic background. Functional expression of the R894X mutant in Xenopus oocytes revealed a large reduction, but not complete abolition, of chloride currents. Further, it had a weak dominant negative effect on wild-type currents in coexpression studies. Reduction of currents predicted for heterozygous carriers are close to the borderline value, which is sufficient to elicit myotonia.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdalla J. A., Casley W. L., Cousin H. K., Hudson A. J., Murphy E. G., Cornélis F. C., Hashimoto L., Ebers G. C. Linkage of Thomsen disease to the T-cell-receptor beta (TCRB) locus on chromosome 7q35. Am J Hum Genet. 1992 Sep;51(3):579–584. [PMC free article] [PubMed] [Google Scholar]
- Bryant S. H., Morales-Aguilera A. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J Physiol. 1971 Dec;219(2):367–383. doi: 10.1113/jphysiol.1971.sp009667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- George A. L., Jr, Crackower M. A., Abdalla J. A., Hudson A. J., Ebers G. C. Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita). Nat Genet. 1993 Apr;3(4):305–310. doi: 10.1038/ng0493-305. [DOI] [PubMed] [Google Scholar]
- George A. L., Jr, Sloan-Brown K., Fenichel G. M., Mitchell G. A., Spiegel R., Pascuzzi R. M. Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita. Hum Mol Genet. 1994 Nov;3(11):2071–2072. [PubMed] [Google Scholar]
- Heine R., George A. L., Jr, Pika U., Deymeer F., Rüdel R., Lehmann-Horn F. Proof of a non-functional muscle chloride channel in recessive myotonia congenita (Becker) by detection of a 4 base pair deletion. Hum Mol Genet. 1994 Jul;3(7):1123–1128. doi: 10.1093/hmg/3.7.1123. [DOI] [PubMed] [Google Scholar]
- Jentsch T. J., Steinmeyer K., Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature. 1990 Dec 6;348(6301):510–514. doi: 10.1038/348510a0. [DOI] [PubMed] [Google Scholar]
- Kawasaki M., Uchida S., Monkawa T., Miyawaki A., Mikoshiba K., Marumo F., Sasaki S. Cloning and expression of a protein kinase C-regulated chloride channel abundantly expressed in rat brain neuronal cells. Neuron. 1994 Mar;12(3):597–604. doi: 10.1016/0896-6273(94)90215-1. [DOI] [PubMed] [Google Scholar]
- Kieferle S., Fong P., Bens M., Vandewalle A., Jentsch T. J. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6943–6947. doi: 10.1073/pnas.91.15.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch M. C., Ricker K., Otto M., Wolf F., Zoll B., Lorenz C., Steinmeyer K., Jentsch T. J. Evidence for genetic homogeneity in autosomal recessive generalised myotonia (Becker). J Med Genet. 1993 Nov;30(11):914–917. doi: 10.1136/jmg.30.11.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch M. C., Steinmeyer K., Lorenz C., Ricker K., Wolf F., Otto M., Zoll B., Lehmann-Horn F., Grzeschik K. H., Jentsch T. J. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 1992 Aug 7;257(5071):797–800. doi: 10.1126/science.1379744. [DOI] [PubMed] [Google Scholar]
- Krieg P. A., Melton D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984 Sep 25;12(18):7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwieciński H., Lehmann-Horn F., Rüdel R. Drug-induced myotonia in human intercostal muscle. Muscle Nerve. 1988 Jun;11(6):576–581. doi: 10.1002/mus.880110609. [DOI] [PubMed] [Google Scholar]
- Lehmann-Horn F., Mailänder V., Heine R., George A. L. Myotonia levior is a chloride channel disorder. Hum Mol Genet. 1995 Aug;4(8):1397–1402. doi: 10.1093/hmg/4.8.1397. [DOI] [PubMed] [Google Scholar]
- Lipicky R. J., Bryant S. H., Salmon J. H. Cable parameters, sodium, potassium, chloride, and water content, and potassium efflux in isolated external intercostal muscle of normal volunteers and patients with myotonia congenita. J Clin Invest. 1971 Oct;50(10):2091–2103. doi: 10.1172/JCI106703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorenz C., Meyer-Kleine C., Steinmeyer K., Koch M. C., Jentsch T. J. Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia. Hum Mol Genet. 1994 Jun;3(6):941–946. doi: 10.1093/hmg/3.6.941. [DOI] [PubMed] [Google Scholar]
- Mashal R. D., Koontz J., Sklar J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat Genet. 1995 Feb;9(2):177–183. doi: 10.1038/ng0295-177. [DOI] [PubMed] [Google Scholar]
- Mehrke G., Brinkmeier H., Jockusch H. The myotonic mouse mutant ADR: electrophysiology of the muscle fiber. Muscle Nerve. 1988 May;11(5):440–446. doi: 10.1002/mus.880110505. [DOI] [PubMed] [Google Scholar]
- Meyer-Kleine C., Otto M., Zoll B., Koch M. C. Molecular and genetic characterisation of German families with paramyotonia congenita and demonstration of founder effect in the Ravensberg families. Hum Genet. 1994 Jun;93(6):707–710. doi: 10.1007/BF00201577. [DOI] [PubMed] [Google Scholar]
- Meyer-Kleine C., Ricker K., Otto M., Koch M. C. A recurrent 14 bp deletion in the CLCN1 gene associated with generalized myotonia (Becker). Hum Mol Genet. 1994 Jun;3(6):1015–1016. doi: 10.1093/hmg/3.6.1015. [DOI] [PubMed] [Google Scholar]
- Pusch M., Ludewig U., Rehfeldt A., Jentsch T. J. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature. 1995 Feb 9;373(6514):527–531. doi: 10.1038/373527a0. [DOI] [PubMed] [Google Scholar]
- Rüdel R., Ricker K., Lehmann-Horn F. Transient weakness and altered membrane characteristic in recessive generalized myotonia (Becker). Muscle Nerve. 1988 Mar;11(3):202–211. doi: 10.1002/mus.880110303. [DOI] [PubMed] [Google Scholar]
- Steinmeyer K., Klocke R., Ortland C., Gronemeier M., Jockusch H., Gründer S., Jentsch T. J. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature. 1991 Nov 28;354(6351):304–308. doi: 10.1038/354304a0. [DOI] [PubMed] [Google Scholar]
- Steinmeyer K., Lorenz C., Pusch M., Koch M. C., Jentsch T. J. Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J. 1994 Feb 15;13(4):737–743. doi: 10.1002/j.1460-2075.1994.tb06315.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinmeyer K., Ortland C., Jentsch T. J. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature. 1991 Nov 28;354(6351):301–304. doi: 10.1038/354301a0. [DOI] [PubMed] [Google Scholar]
- Thiemann A., Gründer S., Pusch M., Jentsch T. J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992 Mar 5;356(6364):57–60. doi: 10.1038/356057a0. [DOI] [PubMed] [Google Scholar]
- Youil R., Kemper B. W., Cotton R. G. Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):87–91. doi: 10.1073/pnas.92.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Slegtenhorst M. A., Bassi M. T., Borsani G., Wapenaar M. C., Ferrero G. B., de Conciliis L., Rugarli E. I., Grillo A., Franco B., Zoghbi H. Y. A gene from the Xp22.3 region shares homology with voltage-gated chloride channels. Hum Mol Genet. 1994 Apr;3(4):547–552. doi: 10.1093/hmg/3.4.547. [DOI] [PubMed] [Google Scholar]

