Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1995 Aug;57(2):284–291.

A single amino acid substitution within the mature sequence of ornithine aminotransferase obstructs mitochondrial entry of the precursor.

T Kobayashi 1, H Ogawa 1, M Kasahara 1, Z Shiozawa 1, T Matsuzawa 1
PMCID: PMC1801533  PMID: 7668253

Abstract

We describe here evidence of congenital enzyme mistargeting induced not by abnormalities in the signal sequence. We examined the molecular mechanism of hereditary ornithine aminotransferase (OAT) deficiency causing gyrate atrophy of the choroid and retina (GACR). Nucleotide sequencing of OAT cDNA generated from a GACR patient's mRNA revealed a single base change from C to G at position 268, resulting in an amino acid substitution of neutral Gln(CAA) with negatively charged Glu(GAA) at position 90 (Q90E). Immunohistochemical and transient expression analyses suggested expression of a defective labile OAT in the patient's tissues. However, high-level expression and immunocytochemical analyses elucidated that Q90E OAT (the patient's OAT) was localized within the limits of cytoplasmic free ribosomes in precursor form without any mitochondrial entry, indicating that the patient's precursor OAT was synthesized and rapidly degraded because of accumulation in the cytosol. It is interesting that, although the mutation site (Q90E) in this GACR patient's OAT was within the coding sequence of the mature protein, the precursor exhibited loss of mitochondrial targeting function. These findings suggest that not only the signal sequence but a critical part of the mature sequence plays an essential role in mitochondrial entry of the OAT precursor protein.

Full text

PDF
284

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett D. J., Bateman J. B., Sparkes R. S., Mohandas T., Klisak I., Inana G. Chromosomal localization of human ornithine aminotransferase gene sequences to 10q26 and Xp11.2. Invest Ophthalmol Vis Sci. 1987 Jul;28(7):1037–1042. [PubMed] [Google Scholar]
  2. Beckmann R. P., Mizzen L. E., Welch W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. doi: 10.1126/science.2188360. [DOI] [PubMed] [Google Scholar]
  3. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brody L. C., Mitchell G. A., Obie C., Michaud J., Steel G., Fontaine G., Robert M. F., Sipila I., Kaiser-Kupfer M., Valle D. Ornithine delta-aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences. J Biol Chem. 1992 Feb 15;267(5):3302–3307. [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Chirico W. J., Waters M. G., Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature. 1988 Apr 28;332(6167):805–810. doi: 10.1038/332805a0. [DOI] [PubMed] [Google Scholar]
  7. Danpure C. J., Cooper P. J., Wise P. J., Jennings P. R. An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J Cell Biol. 1989 Apr;108(4):1345–1352. doi: 10.1083/jcb.108.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Danpure C. J., Purdue P. E., Fryer P., Griffiths S., Allsop J., Lumb M. J., Guttridge K. M., Jennings P. R., Scheinman J. I., Mauer S. M. Enzymological and mutational analysis of a complex primary hyperoxaluria type 1 phenotype involving alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting and intraperoxisomal aggregation. Am J Hum Genet. 1993 Aug;53(2):417–432. [PMC free article] [PubMed] [Google Scholar]
  9. Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988 Apr 28;332(6167):800–805. doi: 10.1038/332800a0. [DOI] [PubMed] [Google Scholar]
  10. Emr S. D., Vassarotti A., Garrett J., Geller B. L., Takeda M., Douglas M. G. The amino terminus of the yeast F1-ATPase beta-subunit precursor functions as a mitochondrial import signal. J Cell Biol. 1986 Feb;102(2):523–533. doi: 10.1083/jcb.102.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartl F. U., Pfanner N., Nicholson D. W., Neupert W. Mitochondrial protein import. Biochim Biophys Acta. 1989 Jan 18;988(1):1–45. doi: 10.1016/0304-4157(89)90002-6. [DOI] [PubMed] [Google Scholar]
  12. Hase T., Müller U., Riezman H., Schatz G. A 70-kd protein of the yeast mitochondrial outer membrane is targeted and anchored via its extreme amino terminus. EMBO J. 1984 Dec 20;3(13):3157–3164. doi: 10.1002/j.1460-2075.1984.tb02274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hurt E. C., Müller U., Schatz G. The first twelve amino acids of a yeast mitochondrial outer membrane protein can direct a nuclear-coded cytochrome oxidase subunit to the mitochondrial inner membrane. EMBO J. 1985 Dec 16;4(13A):3509–3518. doi: 10.1002/j.1460-2075.1985.tb04110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hurt E. C., Pesold-Hurt B., Schatz G. The amino-terminal region of an imported mitochondrial precursor polypeptide can direct cytoplasmic dihydrofolate reductase into the mitochondrial matrix. EMBO J. 1984 Dec 20;3(13):3149–3156. doi: 10.1002/j.1460-2075.1984.tb02272.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ichihara Y., Kurosawa Y. Construction of new T vectors for direct cloning of PCR products. Gene. 1993 Aug 16;130(1):153–154. doi: 10.1016/0378-1119(93)90361-6. [DOI] [PubMed] [Google Scholar]
  16. Inana G., Chambers C., Hotta Y., Inouye L., Filpula D., Pulford S., Shiono T. Point mutation affecting processing of the ornithine aminotransferase precursor protein in gyrate atrophy. J Biol Chem. 1989 Oct 15;264(29):17432–17436. [PubMed] [Google Scholar]
  17. KATUNUMA N., MATSUDA Y., TOMINO I. STUDIES ON ORNITHINE-KETOACID TRANSAMINASE. I. PURIFICATION AND PROPERTIES. J Biochem. 1964 Dec;56:499–503. doi: 10.1093/oxfordjournals.jbchem.a128027. [DOI] [PubMed] [Google Scholar]
  18. Kobayashi T., Nishii M., Takagi Y., Titani K., Matsuzawa T. Molecular cloning and nucleotide sequence analysis of mRNA for human kidney ornithine aminotransferase. An examination of ornithine aminotransferase isozymes between liver and kidney. FEBS Lett. 1989 Sep 25;255(2):300–304. doi: 10.1016/0014-5793(89)81110-x. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lithgow T., Ristevski S., Höj P., Hoogenraad N. High-level expression of a mitochondrial enzyme, ornithine transcarbamylase from rat liver, in a baculovirus expression system. DNA Cell Biol. 1991 Jul-Aug;10(6):443–449. doi: 10.1089/dna.1991.10.443. [DOI] [PubMed] [Google Scholar]
  22. Marković-Housley Z., Kania M., Lustig A., Vincent M. G., Jansonius J. N., John R. A. Quaternary structure of ornithine aminotransferase in solution and preliminary crystallographic data. Eur J Biochem. 1987 Jan 15;162(2):345–350. doi: 10.1111/j.1432-1033.1987.tb10607.x. [DOI] [PubMed] [Google Scholar]
  23. Matsuzawa T., Katsunuma T., Katunuma N. Crystallization of ornithine transaminase and its properties. Biochem Biophys Res Commun. 1968 Jul 26;32(2):161–166. doi: 10.1016/0006-291x(68)90363-x. [DOI] [PubMed] [Google Scholar]
  24. Mitchell G. A., Looney J. E., Brody L. C., Steel G., Suchanek M., Engelhardt J. F., Willard H. F., Valle D. Human ornithine-delta-aminotransferase. cDNA cloning and analysis of the structural gene. J Biol Chem. 1988 Oct 5;263(28):14288–14295. [PubMed] [Google Scholar]
  25. Mueckler M. M., Himeno M., Pitot H. C. In vitro synthesis and processing of a precursor to ornithine aminotransferase. J Biol Chem. 1982 Jun 25;257(12):7178–7180. [PubMed] [Google Scholar]
  26. Murakami H., Pain D., Blobel G. 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J Cell Biol. 1988 Dec;107(6 Pt 1):2051–2057. doi: 10.1083/jcb.107.6.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Donnell J. J., Sandman R. P., Martin S. R. Deficient L-ornithine: 2-oxoacid aminotransferase activity in cultured fibroblasts from a patient with gyrate atrophy of the retina. Biochem Biophys Res Commun. 1977 Nov 21;79(2):396–399. doi: 10.1016/0006-291x(77)90170-x. [DOI] [PubMed] [Google Scholar]
  28. Ohura T., Kominami E., Tada K., Katunuma N. Crystallization and properties of human liver ornithine aminotransferase. J Biochem. 1982 Dec;92(6):1785–1792. doi: 10.1093/oxfordjournals.jbchem.a134108. [DOI] [PubMed] [Google Scholar]
  29. Oyama R., Suzuki M., Matsuzawa T., Titani K. Complete amino acid sequence of rat kidney ornithine aminotransferase: identity with liver ornithine aminotransferase. J Biochem. 1990 Jul;108(1):133–138. doi: 10.1093/oxfordjournals.jbchem.a123152. [DOI] [PubMed] [Google Scholar]
  30. Pfanner N., Neupert W. The mitochondrial protein import apparatus. Annu Rev Biochem. 1990;59:331–353. doi: 10.1146/annurev.bi.59.070190.001555. [DOI] [PubMed] [Google Scholar]
  31. Purdue P. E., Takada Y., Danpure C. J. Identification of mutations associated with peroxisome-to-mitochondrion mistargeting of alanine/glyoxylate aminotransferase in primary hyperoxaluria type 1. J Cell Biol. 1990 Dec;111(6 Pt 1):2341–2351. doi: 10.1083/jcb.111.6.2341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Simell O., Takki K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet. 1973 May 12;1(7811):1031–1033. doi: 10.1016/s0140-6736(73)90667-3. [DOI] [PubMed] [Google Scholar]
  35. Smith R. J., Phang J. M. The importance of ornithine as a precursor for proline in mammalian cells. J Cell Physiol. 1979 Mar;98(3):475–481. doi: 10.1002/jcp.1040980306. [DOI] [PubMed] [Google Scholar]
  36. Sztul E. S., Chu T. W., Strauss A. W., Rosenberg L. E. Import of the malate dehydrogenase precursor by mitochondria. Cleavage within leader peptide by matrix protease leads to formation of intermediate-sized form. J Biol Chem. 1988 Aug 25;263(24):12085–12091. [PubMed] [Google Scholar]
  37. Sztul E. S., Hendrick J. P., Kraus J. P., Wall D., Kalousek F., Rosenberg L. E. Import of rat ornithine transcarbamylase precursor into mitochondria: two-step processing of the leader peptide. J Cell Biol. 1987 Dec;105(6 Pt 1):2631–2639. doi: 10.1083/jcb.105.6.2631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Takki K., Simell O. Genetic aspects in gyrate atrophy of the choroid and retina with hyperornithinaemia. Br J Ophthalmol. 1974 Nov;58(11):907–916. doi: 10.1136/bjo.58.11.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Trijbels J. M., Sengers R. C., Bakkeren J. A., De Kort A. F., Deutman A. F. L-Ornithine-ketoacid-transaminase deficiency in cultured fibroblasts of a patient with hyperornithinaemia and gyrate atrophy of the choroid and retina. Clin Chim Acta. 1977 Sep 1;79(2):371–377. doi: 10.1016/0009-8981(77)90431-4. [DOI] [PubMed] [Google Scholar]
  40. Tsunoda S., Shiozawa Z., Kobayashi M., Takei M. [Muscular atrophy and tubular aggregates associated with hyperornithinemia and gyrate atrophy of the choroid and retina--report of two brothers]. Rinsho Shinkeigaku. 1986 May;26(5):479–482. [PubMed] [Google Scholar]
  41. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES