Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1985 Jun;27(6):921–924. doi: 10.1128/aac.27.6.921

Alteration of ribosomes and RNA polymerase in drug-resistant clinical isolates of Mycobacterium tuberculosis.

T Yamada, A Nagata, Y Ono, Y Suzuki, T Yamanouchi
PMCID: PMC180187  PMID: 3927838

Abstract

The biochemical mechanism of resistance to kanamycin, viomycin, and rifampin in five clinical isolates of Mycobacterium tuberculosis was studied. Resistance to viomycin and kanamycin was attributed to altered ribosomes, whereas resistance to rifampin was attributed to an alteration of RNA polymerase. Ribosomal resistance was, however, not the only way of expressing resistance to viomycin and kanamycin.

Full text

PDF
921

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clewell D. B., Helinski D. R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159–1166. doi: 10.1073/pnas.62.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crawford J. T., Bates J. H. Isolation of plasmids from mycobacteria. Infect Immun. 1979 Jun;24(3):979–981. doi: 10.1128/iai.24.3.979-981.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eliopoulos G. M., Farber B. F., Murray B. E., Wennersten C., Moellering R. C., Jr Ribosomal resistance of clinical enterococcal to streptomycin isolates. Antimicrob Agents Chemother. 1984 Mar;25(3):398–399. doi: 10.1128/aac.25.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Konno K., Oizumi K., Oka S. Mode of action of rifampin on mycobacteria. II. Biosynthetic studies on the inhibition of ribonucleic acid polymerase of Mycobacterium bovis BCG by rifampin and uptake of rifampin- 14 C by Mycobacterium phlei. Am Rev Respir Dis. 1973 Jun;107(6):1006–1012. doi: 10.1164/arrd.1973.107.6.1006. [DOI] [PubMed] [Google Scholar]
  5. Mitsuhashi S., Tanaka T., Kawabe H., Umezawa H. Biochemical mechanism of kanamycin resistance in Mycobacterium tuberculosis. Microbiol Immunol. 1977;21(6):325–327. doi: 10.1111/j.1348-0421.1977.tb00294.x. [DOI] [PubMed] [Google Scholar]
  6. Mizuguchi Y., Fukunaga M., Taniguchi H. Plasmid deoxyribonucleic acid and translucent-to-opaque variation in Mycobacterium intracellulare 103. J Bacteriol. 1981 May;146(2):656–659. doi: 10.1128/jb.146.2.656-659.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mizuguchi Y., Suga K., Masuda K., Yamada T. Genetic and biochemical studies on drug-resistant mutants in Mycobacterium smegmatis. Jpn J Microbiol. 1974 Nov;18(6):457–462. doi: 10.1111/j.1348-0421.1974.tb00834.x. [DOI] [PubMed] [Google Scholar]
  8. Mizuguchi Y., Udou T., Yamada T. Mechanism of antibiotic resistance in Mycobacterium intracellulare. Microbiol Immunol. 1983;27(5):425–431. doi: 10.1111/j.1348-0421.1983.tb00601.x. [DOI] [PubMed] [Google Scholar]
  9. Shaila M. S., Gopinathan K. P., Ramakrishnan T. Protein synthesis in Mycobacterium tuberculosis H37Rv and the effect of streptomycin in streptomycin-susceptible and -resistant strains. Antimicrob Agents Chemother. 1973 Sep;4(3):205–213. doi: 10.1128/aac.4.3.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. White R. J., Lancini G. C., Silvestri L. G. Mechanism of action of rifampin on Mycobacterium smegmatis. J Bacteriol. 1971 Nov;108(2):737–741. doi: 10.1128/jb.108.2.737-741.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yamada T., Kawaguchi K., Masuda K., Shoji K., Hori M. Inhibition of polyphenylalanine synthesis on ribosomes of mycobacteria by tuberactinomycin-N. Am Rev Respir Dis. 1972 Nov;106(5):769–771. doi: 10.1164/arrd.1972.106.5.769. [DOI] [PubMed] [Google Scholar]
  12. Yamada T., Masuda K., Mizuguchi Y., Suga K. Altered ribosomes in antibiotic-resistant mutants of Mycobacterium smegmatis. Antimicrob Agents Chemother. 1976 May;9(5):817–823. doi: 10.1128/aac.9.5.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yamada T., Masuda K., Shoji K., Hori M. Analysis of ribosomes from viomycin-sensitive and -resistant strains of Mycobacterium smegmatis. J Bacteriol. 1972 Oct;112(1):1–6. doi: 10.1128/jb.112.1.1-6.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yamada T., Masuda K., Shoji K., Hori M. Pleiotropic antibiotic resistance mutations associated with ribosomes and ribosomal subunits in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1974 Jul;6(1):46–53. doi: 10.1128/aac.6.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yamada T., Mizugichi Y., Nierhaus K. H., Wittmann H. G. Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature. 1978 Oct 5;275(5679):460–461. doi: 10.1038/275460a0. [DOI] [PubMed] [Google Scholar]
  16. Yamada T., Yamanouchi T., Ono Y., Nagata A., Wakamiya T., Teshima T., Shiba T. Antibacterial activity of palmitoyltuberactinamine N and di-beta-lysylcapreomycin IIA. J Antibiot (Tokyo) 1983 Dec;36(12):1729–1734. doi: 10.7164/antibiotics.36.1729. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES