Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1985 Sep;28(3):404–412. doi: 10.1128/aac.28.3.404

Influence of four modes of administration on penetration of aztreonam, cefuroxime, and ampicillin into interstitial fluid and fibrin clots and on in vivo efficacy against Haemophilus influenzae.

G Y Lavoie, M G Bergeron
PMCID: PMC180262  PMID: 3878128

Abstract

The extravascular penetration and bactericidal activity of aztreonam, cefuroxime, and ampicillin against beta-lactamase-positive and -negative Haemophilus influenzae strains were compared in a rabbit model. All groups of animals received an identical total dose of 100 mg of either antibiotic per kg given by four different intravenous modes of administration including a single large injection, four intermittent injections, a continuous infusion, and an injection followed by an infusion. Aztreonam had a higher degree of penetration in interstitial fluid and fibrin clots and was the most effective agent against beta-lactamase-positive and -negative H. influenzae. A single large injection of either drug resulted in significantly higher peak levels and higher initial area under the curves of concentrations of drugs in serum, the interstitial fluid, and fibrin clots than those by other modes of administration. Continuous infusions of antibiotics resulted in poor in vivo bactericidal activity. Other modes of administration exhibited good antibacterial activity within the first 6 h of the study. Thereafter, a single large injection of aztreonam resulted in a much more rapid killing of H. influenzae than that by injection of the other drugs. Aztreonam and cefuroxime showed good in vivo stability to beta-lactamase produced by H. influenzae while ampicillin was rapidly hydrolyzed in vivo.

Full text

PDF
404

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barza M., Brusch J., Bergeron M. G., Weinstein L. Penetration of antibiotics into fibrin loci in vivo. 3. Intermittent vs. continuous infusion and the effect of probenecid. J Infect Dis. 1974 Jan;129(1):73–78. doi: 10.1093/infdis/129.1.73. [DOI] [PubMed] [Google Scholar]
  2. Barza M., Kane A., Baum J. Comparison of the effects of continuous and intermittent systemic administration on the penetration of gentamicin into infected rabbit eyes. J Infect Dis. 1983 Jan;147(1):144–148. doi: 10.1093/infdis/147.1.144. [DOI] [PubMed] [Google Scholar]
  3. Barza M., Samuelson T., Weinstein L. Penetration of antibiotics into fibrin loci in vivo. II. Comparison of nine antibiotics: effect of dose and degree of protein binding. J Infect Dis. 1974 Jan;129(1):66–72. doi: 10.1093/infdis/129.1.66. [DOI] [PubMed] [Google Scholar]
  4. Bergeron M. G., Beauchamp D., Poirier A., Bastille A. Continuous vs. intermittent administration of antimicrobial agents: tissue penetration and efficacy in vivo. Rev Infect Dis. 1981 Jan-Feb;3(1):84–97. doi: 10.1093/clinids/3.1.84. [DOI] [PubMed] [Google Scholar]
  5. Bergeron M. G., Claveau S., Simard P. Limited in vitro activity of cefamandole against 100 beta-lactamase- and non-beta-lactamase-producing Haemophilus influenzae strains: comparison of moxalactam, chloramphenicol, and ampicillin. Antimicrob Agents Chemother. 1981 Jan;19(1):101–105. doi: 10.1128/aac.19.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bergeron M. G., Nguyen B. M., Trottier S., Gauvreau L. Penetration of cefamandole, cephalothin, and desacetylcephalothin into fibrin clots. Antimicrob Agents Chemother. 1977 Dec;12(6):682–687. doi: 10.1128/aac.12.6.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bodey G. P., Ketchel S. J., Rodriguez V. A randomized study of carbenicillin plus cefamandole or tobramycin in the treatment of febrile episodes in cancer patients. Am J Med. 1979 Oct;67(4):608–616. doi: 10.1016/0002-9343(79)90242-0. [DOI] [PubMed] [Google Scholar]
  8. Bodey G. P., Valdivieso M., Yap B. S. The role of schedule of antibiotic therapy on the neutropenic patient. Infection. 1980;Suppl 1:75–81. doi: 10.1007/BF01644940. [DOI] [PubMed] [Google Scholar]
  9. Bonner D. P., Whitney R. R., Baughn C. O., Miller B. H., Olsen S. J., Sykes R. B. In-vivo properties of SQ 26,776. J Antimicrob Chemother. 1981 Dec;8 (Suppl E):123–130. doi: 10.1093/jac/8.suppl_e.123. [DOI] [PubMed] [Google Scholar]
  10. Carbon C., Chau N. P., Contrepois A., Lamotte-Barrillon S. Interstitial diffusion and accumulation of cephalothin according to various modes of intermittent administration to rabbits. J Antimicrob Chemother. 1978 Jul;4(4):349–353. doi: 10.1093/jac/4.4.349. [DOI] [PubMed] [Google Scholar]
  11. Carbon C., Contrepois A., Brion N., Lamotte-Barrillon S. Penetration of cefazolin, cephaloridine, and cefamandole into interstitial fluid in rabbits. Antimicrob Agents Chemother. 1977 Apr;11(4):594–598. doi: 10.1128/aac.11.4.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. EAGLE H., FLEISCHMAN R., LEVY M. "Continuous" vs. "discontinuous" therapy with penicillin; the effect of the interval between injections on therapeutic efficacy. N Engl J Med. 1953 Mar 19;248(12):481–488. doi: 10.1056/NEJM195303192481201. [DOI] [PubMed] [Google Scholar]
  13. Feld R., Valdivieso M., Bodey G. P., Rodriguez V. A comparative trial of sisomicin therapy by intermittent versus continuous infusion. Am J Med Sci. 1977 Sep-Oct;274(2):179–188. doi: 10.1097/00000441-197709000-00010. [DOI] [PubMed] [Google Scholar]
  14. Gerding D. N., Hall W. H., Schierl E. A. Antibiotic concentrations in ascitic fluid of patients with ascites and bacterial peritonitis. Ann Intern Med. 1977 Jun;86(6):708–713. doi: 10.7326/0003-4819-86-6-708. [DOI] [PubMed] [Google Scholar]
  15. Hall W. H., Gerding D. N., Schierl E. A. Penetration of tobramycin into infected extravascular fluids and its therapeutic effectiveness. J Infect Dis. 1977 Jun;135(6):957–961. doi: 10.1093/infdis/135.6.957. [DOI] [PubMed] [Google Scholar]
  16. Hoffstedt B., Walder M. Influence of serum protein binding and mode of administration on penetration of five cephalosporins into subcutaneous tissue fluid in humans. Antimicrob Agents Chemother. 1981 Dec;20(6):783–786. doi: 10.1128/aac.20.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KREBS H. A. Body size and tissue respiration. Biochim Biophys Acta. 1950 Jan;4(1-3):249–269. doi: 10.1016/0006-3002(50)90032-1. [DOI] [PubMed] [Google Scholar]
  18. Klastersky J., Thys J. P., Mombelli G. Comparative studies of intermittent and continuous administration of aminoglycosides in the treatment of bronchopulmonary infections due to gram-negative bacteria. Rev Infect Dis. 1981 Jan-Feb;3(1):74–83. doi: 10.1093/clinids/3.1.74. [DOI] [PubMed] [Google Scholar]
  19. McCracken G. H., Jr, Nelson J. D., Grimm L. Pharmacokinetics and bacteriological efficacy of cefoperazone, ceftriaxone, and moxalactam in experimental Streptococcus pneumoniae and Haemophilus influenzae meningitis. Antimicrob Agents Chemother. 1982 Feb;21(2):262–267. doi: 10.1128/aac.21.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PLORDE J. J., GARCIA M., PETERSDORF R. G. STUDIES ON THE PATHOGENESIS OF MENINGITIS. IV. PENICILLIN LEVELS IN THE CEREBROSPINAL FLUID IN EXPERIMENTAL MENINGITIS. J Lab Clin Med. 1964 Dec;64:960–969. [PubMed] [Google Scholar]
  21. Powell S. H., Thompson W. L., Luthe M. A., Stern R. C., Grossniklaus D. A., Bloxham D. D., Groden D. L., Jacobs M. R., DiScenna A. O., Cash H. A. Once-daily vs. continuous aminoglycoside dosing: efficacy and toxicity in animal and clinical studies of gentamicin, netilmicin, and tobramycin. J Infect Dis. 1983 May;147(5):918–932. doi: 10.1093/infdis/147.5.918. [DOI] [PubMed] [Google Scholar]
  22. Ryan D. M., Cars O. Antibiotic assays in muscle: are conventional tissue levels misleading as indicator of the antibacterial activity? Scand J Infect Dis. 1980;12(4):307–309. doi: 10.3109/inf.1980.12.issue-4.12. [DOI] [PubMed] [Google Scholar]
  23. SCHMIDT L. H., WALLEY A. The influence of the dosage regimen on the therapeutic effectiveness of penicillin G in experimental lobar pneumonia. J Pharmacol Exp Ther. 1951 Dec;103(4):479–488. [PubMed] [Google Scholar]
  24. Sande M. A., Korzeniowski O. M., Allegro G. M., Brennan R. O., Zak O., Scheld W. M. Intermittent or continuous therapy of experimental meningitis due to Streptococcus pneumoniae in rabbits: preliminary observations on the postantibiotic effect in vivo. Rev Infect Dis. 1981 Jan-Feb;3(1):98–109. doi: 10.1093/clinids/3.1.98. [DOI] [PubMed] [Google Scholar]
  25. Tan J. S., Trott A., Phair J. P., Watanakunakorn C. A method for measurement of antibiotics in human interstitial fluid. J Infect Dis. 1972 Nov;126(5):492–497. doi: 10.1093/infdis/126.5.492. [DOI] [PubMed] [Google Scholar]
  26. Thys J. P., Vanderkelen B., Klastersky J. Pharmacological study of cefazolin during intermittent and continuous infusion: a crossover investigation in humans. Antimicrob Agents Chemother. 1976 Sep;10(3):395–398. doi: 10.1128/aac.10.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Van Etta L. L., Kravitz G. R., Russ T. E., Fasching C. E., Gerding D. N., Peterson L. R. Effect of method of administration on extravascular penetration of four antibiotics. Antimicrob Agents Chemother. 1982 Jun;21(6):873–880. doi: 10.1128/aac.21.6.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Van Etta L. L., Peterson L. R., Fasching C. E., Gerding D. N. Effect of the ratio of surface area to volume on the penetration of antibiotics in to extravascular spaces in an in vitro model. J Infect Dis. 1982 Sep;146(3):423–428. doi: 10.1093/infdis/146.3.423. [DOI] [PubMed] [Google Scholar]
  29. Wise R., Dyas A., Hegarty A., Andrews J. M. Pharmacokinetics and tissue penetration of azthreonam. Antimicrob Agents Chemother. 1982 Dec;22(6):969–971. doi: 10.1128/aac.22.6.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yap B. S., Bodney G. P. Netilmicin in the treatment of infections in patients with cancer. Arch Intern Med. 1979 Nov;139(11):1259–1262. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES