Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1985 Dec;28(6):781–785. doi: 10.1128/aac.28.6.781

Efficacy of amikacin and ceftazidime in experimental aortic valve endocarditis due to Pseudomonas aeruginosa.

A S Bayer, D Norman, K S Kim
PMCID: PMC180328  PMID: 3909954

Abstract

The in vivo efficacies of amikacin, ceftazidime, and their combination were evaluated in experimental aortic valve endocarditis due to Pseudomonas aeruginosa. Eighty catheterized rabbits were infected with a P. aeruginosa strain susceptible to both amikacin and ceftazidime and then received no therapy (controls), amikacin (15 mg/kg per day), ceftazidime (100 mg/kg per day), or amikacin-ceftazidime. Amikacin-ceftazidime significantly lowered vegetation titers of P. aeruginosa at day 7 of therapy versus other regimens (P less than 0.0005). However, by day 14 of therapy, vegetation titers in animals receiving amikacin or ceftazidime regimens or both were not different from those of untreated controls; this was associated with in vivo development of amikacin resistance in most infected vegetations (79%), a phenomenon not seen at day 7 of therapy. Amikacin resistance was unstable in vivo, being undetectable in vegetations examined 5 days after treatment with amikacin had been completed. In contrast, ceftazidime resistance (first noted at day 7 of therapy in 12% of vegetations) persisted after termination of treatment with this agent. These in vivo observations on loss of amikacin resistance and persistence of ceftazidime resistance were mirrored during in vitro passage studies of amikacin- or ceftazidime-resistant P. aeruginosa strains isolated from cardiac vegetations. Amikacin resistance was no longer detectable by passage 5 in antibiotic-free media; however, ceftazidime resistance was stable despite 15 such passages. In vivo development of aminoglycoside-beta-lactam resistances was associated with poor bacteriologic efficacy in this model.

Full text

PDF
781

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer G., Fekety F. R. Experimental endocarditis due to Pseudomonas aeruginosa. I. Description of a model. J Infect Dis. 1976 Jul;134(1):1–7. doi: 10.1093/infdis/134.1.1. [DOI] [PubMed] [Google Scholar]
  2. Bayer A. S., Eisenstadt R., Morrison J. O. Enhanced in vitro bactericidal activity of amikacin or gentamicin combined with three new extended-spectrum cephalosporins against cephalothin-resistant members of the family Enterobacteriaceae. Antimicrob Agents Chemother. 1984 Jun;25(6):725–728. doi: 10.1128/aac.25.6.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayer A. S., Lam K., Norman D., Kim K. S., Morrison J. O. Amikacin + ceftazidime therapy of experimental right-sided Pseudomonas aeruginosa endocarditis in rabbits. Chemotherapy. 1985;31(5):351–361. doi: 10.1159/000238359. [DOI] [PubMed] [Google Scholar]
  4. Carrizosa J., Kaye D. Antibiotic synergism in enterococcal endocarditis. J Lab Clin Med. 1976 Jul;88(1):132–141. [PubMed] [Google Scholar]
  5. Chambers H. F., Hackbarth C. J., Drake T. A., Rusnak M. G., Sande M. A. Endocarditis due to methicillin-resistant Staphylococcus aureus in rabbits: expression of resistance to beta-lactam antibiotics in vivo and in vitro. J Infect Dis. 1984 Jun;149(6):894–903. doi: 10.1093/infdis/149.6.894. [DOI] [PubMed] [Google Scholar]
  6. Choi C., Bayer A. S., Fujita N. K., Lam K., Guze L. B., Yoshikawa T. T. Therapy of experimental Pseudomonas endocarditis with high-dose amikacin and ticarcillin. Chemotherapy. 1983;29(4):303–312. doi: 10.1159/000238213. [DOI] [PubMed] [Google Scholar]
  7. Kim K. S., Anthony B. F. Use of penicillin-gradient and replicate plates for the demonstration of tolerance to penicillin in streptococci. J Infect Dis. 1983 Sep;148(3):488–491. doi: 10.1093/infdis/148.3.488. [DOI] [PubMed] [Google Scholar]
  8. Kim K. S., Manocchio M., Bayer A. S. Efficacy of cefotaxime and latamoxef for Escherichia coli bacteremia and meningitis in newborn rats. Chemotherapy. 1984;30(4):262–269. doi: 10.1159/000238278. [DOI] [PubMed] [Google Scholar]
  9. Leeder J. S., Spino M., Tesoro A. M., MacLeod S. M. High-pressure liquid chromatographic analysis of ceftazidime in serum and urine. Antimicrob Agents Chemother. 1983 Nov;24(5):720–724. doi: 10.1128/aac.24.5.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lewis J. E., Nelson J. C., Elder H. A. Amikacin: a rapid and sensitive radioimmunoassay. Antimicrob Agents Chemother. 1975 Jan;7(1):42–45. doi: 10.1128/aac.7.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moellering R. C., Jr, Wennersten C., Weinberg A. N. Studies on antibiotic synergism against enterococci. I. Bacteriologic studies. J Lab Clin Med. 1971 May;77(5):821–828. [PubMed] [Google Scholar]
  12. Neu H. C., Labthavikul P. In vitro activity and beta-lactamase stability of cefmenoxime. Antimicrob Agents Chemother. 1982 Aug;22(2):316–322. doi: 10.1128/aac.22.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pearson R. D., Steigbigel R. T., Davis H. T., Chapman S. W. Method of reliable determination of minimal lethal antibiotic concentrations. Antimicrob Agents Chemother. 1980 Nov;18(5):699–708. doi: 10.1128/aac.18.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Prober C. G., Dougherty S. S., Vosti K. L., Yeager A. S. Comparison of a micromethod for performance of the serum bactericidal test with the standard tube dilution method. Antimicrob Agents Chemother. 1979 Jul;16(1):46–48. doi: 10.1128/aac.16.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reyes M. P., Brown W. J., Lerner A. M. Treatment of patients with pseudomonas endocarditis with high dose aminoglycoside and carbenicillin therapy. Medicine (Baltimore) 1978 Jan;57(1):57–67. doi: 10.1097/00005792-197801000-00004. [DOI] [PubMed] [Google Scholar]
  16. Reyes M. P., Lerner A. M. Current problems in the treatment of infective endocarditis due to Pseudomonas aeruginosa. Rev Infect Dis. 1983 Mar-Apr;5(2):314–321. doi: 10.1093/clinids/5.2.314. [DOI] [PubMed] [Google Scholar]
  17. Sande M. A., Johnson M. L. Antimicrobial therapy of experimental endocarditis caused by Staphylococcus aureus. J Infect Dis. 1975 Apr;131(4):367–375. doi: 10.1093/infdis/131.4.367. [DOI] [PubMed] [Google Scholar]
  18. Sanders C. C., Sanders W. E., Jr Emergence of resistance during therapy with the newer beta-lactam antibiotics: role of inducible beta-lactamases and implications for the future. Rev Infect Dis. 1983 Jul-Aug;5(4):639–648. doi: 10.1093/clinids/5.4.639. [DOI] [PubMed] [Google Scholar]
  19. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES