Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1986 Jan;29(1):13–19. doi: 10.1128/aac.29.1.13

Production of new hybrid antibiotics, mederrhodins A and B, by a genetically engineered strain.

S Omura, H Ikeda, F Malpartida, H M Kieser, D A Hopwood
PMCID: PMC180355  PMID: 3460518

Abstract

Hybrid antibiotics mederrhodins A and B were produced by a recombinant strain consisting of the medermycin-producing Streptomyces sp. strain AM7161 containing part of the gene clusters for actinorhodin biosynthesis of Streptomyces coelicolor A3(2). Mederrhodin A has a hydroxyl group at the C-6 position of the medermycin molecule, and mederrhodin B is dihydromederrhodin A. The antimicrobial activity of mederrhodin A resembled that of medermycin. Mederrhodin B was almost devoid of antimicrobial activity.

Full text

PDF
13

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hopwood D. A., Malpartida F., Kieser H. M., Ikeda H., Duncan J., Fujii I., Rudd B. A., Floss H. G., Omura S. Production of 'hybrid' antibiotics by genetic engineering. Nature. 1985 Apr 18;314(6012):642–644. doi: 10.1038/314642a0. [DOI] [PubMed] [Google Scholar]
  2. Hotta K., Yamashita F., Okami Y., Umezawa H. New antibiotic-producing streptomycetes, selected by antibiotic resistance as a marker. II. Features of a new antibiotic-producing clone obtained after fusion treatment. J Antibiot (Tokyo) 1985 Jan;38(1):64–69. doi: 10.7164/antibiotics.38.64. [DOI] [PubMed] [Google Scholar]
  3. Ikeda H., Inoue M., Tanaka H., Omura S. Interspecific protoplast fusion among macrolide-producing streptomycetes. J Antibiot (Tokyo) 1984 Oct;37(10):1224–1230. doi: 10.7164/antibiotics.37.1224. [DOI] [PubMed] [Google Scholar]
  4. Iwai Y., Kora A., Takahashi Y., Hayashi T., Awaya J., Masuma R., Oiwa R., Omura S. Production of deoxyfrenolicin and a new antibiotic, frenolicin B by Streptomyces roseofulvus strain AM-3867. J Antibiot (Tokyo) 1978 Oct;31(10):959–965. doi: 10.7164/antibiotics.31.959. [DOI] [PubMed] [Google Scholar]
  5. Lydiate D. J., Malpartida F., Hopwood D. A. The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene. 1985;35(3):223–235. doi: 10.1016/0378-1119(85)90001-0. [DOI] [PubMed] [Google Scholar]
  6. Malpartida F., Hopwood D. A. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. 1984 May 31-Jun 6Nature. 309(5967):462–464. doi: 10.1038/309462a0. [DOI] [PubMed] [Google Scholar]
  7. Mazieres N., Peyre M., Penasse L. Interspecific recombination among aminoglycoside producing streptomycetes. J Antibiot (Tokyo) 1981 May;34(5):544–550. doi: 10.7164/antibiotics.34.544. [DOI] [PubMed] [Google Scholar]
  8. Omura S., Ikeda H., Matsubara H., Sakakane N. Hybrid biosynthesis and absolute configuration of macrolide antibiotic M-4365 G1. J Antibiot (Tokyo) 1980 Dec;33(12):1570–1572. doi: 10.7164/antibiotics.33.1570. [DOI] [PubMed] [Google Scholar]
  9. Omura S., Sadakane N., Tanaka Y., Matsubara H. Chimeramycins: new macrolide antibiotics produced by hybrid biosynthesis. J Antibiot (Tokyo) 1983 Jul;36(7):927–930. doi: 10.7164/antibiotics.36.927. [DOI] [PubMed] [Google Scholar]
  10. Omura S., Tanaka H., Minami S., Takahashi I. Biosynthesis of nanaomycin. II. Purification and properties of nanaomycin D reductase involved in the formation of nanaomycin A from nanaomycin D1. J Biochem. 1981 Aug;90(2):355–362. doi: 10.1093/oxfordjournals.jbchem.a133481. [DOI] [PubMed] [Google Scholar]
  11. Sadakane N., Tanaka Y., Omura S. Hybrid biosynthesis of derivatives of protylonolide and M-4365 by macrolide-producing microorganisms. J Antibiot (Tokyo) 1982 Jun;35(6):680–687. doi: 10.7164/antibiotics.35.680. [DOI] [PubMed] [Google Scholar]
  12. Schlegel B., Fleck W. F. New anthracycline antibiotics produced by interspecific recombinants of streptomycetes. I. Selection of Streptomyces violaceus subsp. iremyceticus, an iremycin-producing subspecies. Z Allg Mikrobiol. 1980;20(8):527–530. doi: 10.1002/jobm.3630200808. [DOI] [PubMed] [Google Scholar]
  13. Shier W. T., Rinehart K. L., Jr, Gottlieb D. Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc Natl Acad Sci U S A. 1969 May;63(1):198–204. doi: 10.1073/pnas.63.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tanaka H., Koyama Y., Nagai T., Marumo H., Omura S. Nanomycins, new antibiotics produced by a strain of Streptomyces. II. Structure and biosynthesis. J Antibiot (Tokyo) 1975 Nov;28(11):868–875. doi: 10.7164/antibiotics.28.868. [DOI] [PubMed] [Google Scholar]
  15. Thompson C. J., Ward J. M., Hopwood D. A. Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol. 1982 Aug;151(2):668–677. doi: 10.1128/jb.151.2.668-677.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES