Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1986 Jan;29(1):77–84. doi: 10.1128/aac.29.1.77

Activities of 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodocytosine and its metabolites against herpes simplex virus types 1 and 2 in cell culture and in mice infected intracerebrally with herpes simplex virus type 2.

R F Schinazi, J J Fox, K A Watanabe, A J Nahmias
PMCID: PMC180368  PMID: 3015003

Abstract

As measured by plaque and yield reduction assays, several metabolites of 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodocytosine (FIAC) were highly active against herpes simplex virus types 1 and 2. These metabolites included the 2'-deoxy-2'-fluoroarabinosyl derivatives of 5-iodouracil (FIAU), cytosine (FAC), uracil (FAU), and thymine (FMAU). In mice inoculated intracerebrally with herpes simplex virus type 2, the relative order of potency of these compounds and licensed antiviral drugs was as follows: FMAU much greater than FIAC approximately equal to FIAU greater than acyclovir approximately equal to vidarabine much greater than FAC approximately equal to FAU. One of the main metabolites of FMAU, 2'-fluoro-5-hydroxymethyl-arabinosyluracil, was essentially inactive in vivo. FIAC-, FIAU-, FMAU-, FAC-, and FAU-resistant herpes simplex virus variants prepared in cell culture were found to be (i) devoid of viral thymidine kinase, (ii) cross-resistant to one another and resistant to drugs requiring viral thymidine kinase for activation, and (iii) sensitive to vidarabine or phosphonoformate. These results indicate that FIAC, FIAU, and FMAU require the virally encoded thymidine kinase for activation and suggest that the antiviral activity of FAU and FAC in cell cultures is also mediated by this enzyme. The interaction of the fluoroarabinosyl pyrimidine nucleosides with herpes simplex virus thymidine kinase in a cell-free system is also described.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allaudeen H. S., Descamps J., Sehgal R. K., Fox J. J. Selective inhibition of DNA replication in herpes simplex virus infected cells by 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-iodocytosine. J Biol Chem. 1982 Oct 25;257(20):11879–11882. [PubMed] [Google Scholar]
  2. Biron K. K., Noblin J. E., de Miranda P., Elion G. B. Uptake, distribution, and anabolism of acyclovir in herpes simplex virus-infected mice. Antimicrob Agents Chemother. 1982 Jan;21(1):44–50. doi: 10.1128/aac.21.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burchenal J. H., Chou T. C., Lokys L., Smith R. S., Watanabe K. A., Su T. L., Fox J. J. Activity of 2-fluoro-5-methylarabinofuranosyluracil against mouse leukemias sensitive to and resistant to 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1982 Jul;42(7):2598–2600. [PubMed] [Google Scholar]
  4. Chen M. S., Amico L. A., Speelman D. J. Kinetics of the interaction of monophosphates of the antiviral nucleosides 2'-fluoro-1-beta-D-arabinofuranosylpyrimidine and (E)-5-(2-bromovinyl)-2'-deoxyuridine with thymidylate kinases from Vero cells and herpes simplex virus types 1 and 2. Antimicrob Agents Chemother. 1984 Nov;26(5):778–780. doi: 10.1128/aac.26.5.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng Y. C., Dutschman G., Fox J. J., Watanabe K. A., Machida H. Differential activity of potential antiviral nucleoside analogs on herpes simplex virus-induced and human cellular thymidine kinases. Antimicrob Agents Chemother. 1981 Sep;20(3):420–423. doi: 10.1128/aac.20.3.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng Y. C., Schinazi R. F., Dutschman G. E., Tan R. S., Grill S. P. Virus-induced thymidine kinases as markers for typing herpes simplex viruses and for drug sensitivity assays. J Virol Methods. 1982 Nov;5(3-4):209–217. doi: 10.1016/0166-0934(82)90011-8. [DOI] [PubMed] [Google Scholar]
  7. Chou T. C., Burchenal J. H., Schmid F. A., Braun T. J., Su T. L., Watanabe K. A., Fox J. J., Philips F. S. Biochemical effects of 2'-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil and 2'-fluoro-5-iodo-1-beta-D-arabinofuranosylcytosine in mouse leukemic cells sensitive and resistant to 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1982 Oct;42(10):3957–3963. [PubMed] [Google Scholar]
  8. Chou T. C., Feinberg A., Grant A. J., Vidal P., Reichman U., Watanabe K. A., Fox J. J., Philips F. S. Pharmacological disposition and metabolic fate of 2'-fluoro-5-iodo-1-beta-D-arabinofuranosylcytosine in mice and rats. Cancer Res. 1981 Sep;41(9 Pt 1):3336–3342. [PubMed] [Google Scholar]
  9. Chou T. C., Lopez C., Colacino J. M., Feinberg A., Watanabe K. A., Fox J. J., Philips F. S. Metabolic competition studies of 2'-fluoro-5-iodo-1-beta-d-arabinofuranosylcytosine in vero cells and herpes simplex type 1-infected vero cells. Mol Pharmacol. 1984 Nov;26(3):587–593. [PubMed] [Google Scholar]
  10. Descamps J., De Clercq E., Barr P. J., Jones A. S., Walker R. T., Torrence P. F., Shugar D. Relative potencies of different anti-herpes agents in the topical treatment of cutaneous herpes simplex virus infection of athymic nude mice. Antimicrob Agents Chemother. 1979 Nov;16(5):680–682. doi: 10.1128/aac.16.5.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fanucchi M. P., Leyland-Jones B., Young C. W., Burchenal J. H., Watanabe K. A., Fox J. J. Phase I trial of 1-(2'-deoxy-2'-fluoro-1-beta-D-arabinofuranosyl)-5-methyluracil (FMAU). Cancer Treat Rep. 1985 Jan;69(1):55–59. [PubMed] [Google Scholar]
  12. Feinberg A., Leyland-Jones B., Fanucchi M. P., Hancock C., Fox J. J., Watanabe K. A., Vidal P. M., Williams L., Young C. W., Philips F. S. Biotransformation and elimination of [2-14C]-1-(2-deoxy-2'-fluoro-beta-D -arabinofuranosyl)-5-iodocytosine in immunosuppressed patients with herpesvirus infections. Antimicrob Agents Chemother. 1985 May;27(5):733–738. doi: 10.1128/aac.27.5.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feinberg A., Vidal P. M., Fox J. J., Watanabe K. A., Chun M. W., Field F. H., Bencsath A., Chait B., Philips F. S. Structures of metabolites isolated from urine of mice treated with the antiviral agent, 1-(2-fluoro-2-deoxy-beta-D-arabinofuranosyl)-5-methyluracil. Drug Metab Dispos. 1984 Nov-Dec;12(6):784–786. [PubMed] [Google Scholar]
  14. Fox L., Dobersen M. J., Greer S. Incorporation of 5-substituted analogs of deoxycytidine into DNA of herpes simplex virus-infected or - transformed cells without deamination to the thymidine analog. Antimicrob Agents Chemother. 1983 Mar;23(3):465–476. doi: 10.1128/aac.23.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grant A. J., Feinberg A., Chou T. C., Watanabe K. A., Fox J. J., Philips F. S. Incorporation of metabolites of 2'-fluoro-5-iodo-1-beta-D-arabinofuranosylcytosine into deoxyribonucleic acid of neoplastic and normal mammalian tissues. Biochem Pharmacol. 1982 Mar 15;31(6):1103–1108. doi: 10.1016/0006-2952(82)90349-5. [DOI] [PubMed] [Google Scholar]
  16. Hirsch M. S., Zisman B., Allison A. C. Macrophages and age-dependent resistance to Herpes simplex virus in mice. J Immunol. 1970 May;104(5):1160–1165. [PubMed] [Google Scholar]
  17. Kern E. R. Acyclovir treatment of experimental genital herpes simplex virus infections. Am J Med. 1982 Jul 20;73(1A):100–108. doi: 10.1016/0002-9343(82)90073-0. [DOI] [PubMed] [Google Scholar]
  18. Klein R. J., Friedman-Kien A. E., DeStefano E. Latent herpes simplex virus infections in sensory ganglia of hairless mice prevented by acycloguanosine. Antimicrob Agents Chemother. 1979 May;15(5):723–729. doi: 10.1128/aac.15.5.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kreis W., Damin L., Colacino J., Lopez C. In vitro metabolism of 1-beta-D-arabinofuranosylcytosine and 1-beta-2'-fluoroarabino-5-iodocytosine in normal and herpes simplex type 1 virus-infected cells. Biochem Pharmacol. 1982 Mar 1;31(5):767–773. doi: 10.1016/0006-2952(82)90461-0. [DOI] [PubMed] [Google Scholar]
  20. Lopez C., Watanabe K. A., Fox J. J. 2'-fluoro-5-iodo-aracytosine, a potent and selective anti-herpesvirus agent. Antimicrob Agents Chemother. 1980 May;17(5):803–806. doi: 10.1128/aac.17.5.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mogensen S. C. Macrophages and age-dependent resistance to hepatitis induced by herpes simplex virus type 2 im mice. Infect Immun. 1978 Jan;19(1):46–50. doi: 10.1128/iai.19.1.46-50.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Philips F. S., Feinberg A., Chou T. C., Vidal P. M., Su T. L., Watanabe K. A., Fox J. J. Distribution, metabolism, and excretion of 1-(2-fluoro-2-deoxy-beta-D- arabinofuranosyl)thymine and 1-(2-fluoro-2-deoxy-beta-D-arabinofuranosyl)-5- iodocytosine. Cancer Res. 1983 Aug;43(8):3619–3627. [PubMed] [Google Scholar]
  23. Ruth J. L., Cheng Y. C. Nucleoside analogues with clinical potential in antivirus chemotherapy. The effect of several thymidine and 2'-deoxycytidine analogue 5'-triphosphates on purified human (alpha, beta) and herpes simplex virus (types 1, 2) DNA polymerases. Mol Pharmacol. 1981 Sep;20(2):415–422. [PubMed] [Google Scholar]
  24. Schinazi R. F., Nahmias A. J. Different in vitro effects of dual combinations of anti-herpes simplex virus compounds. Am J Med. 1982 Jul 20;73(1A):40–48. doi: 10.1016/0002-9343(82)90061-4. [DOI] [PubMed] [Google Scholar]
  25. Schinazi R. F., Peters J., Sokol M. K., Nahmias A. J. Therapeutic activities of 1-(2-fluoro-2-deoxy-beta-D-arabinofuranosyl)-5-iodocytosine and -thymine alone and in combination with acyclovir and vidarabine in mice infected intracerebrally with herpes simplex virus. Antimicrob Agents Chemother. 1983 Jul;24(1):95–103. doi: 10.1128/aac.24.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schinazi R. F., Peters J., Williams C. C., Chance D., Nahmias A. J. Effect of combinations of acyclovir with vidarabine or its 5'-monophosphate on herpes simplex viruses in cell culture and in mice. Antimicrob Agents Chemother. 1982 Sep;22(3):499–507. doi: 10.1128/aac.22.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shiau G. T., Schinazi R. F., Chen M. S., Prusoff W. H. Synthesis and biological activities of 5-(hydroxymethyl, azidomethyl, or aminomethyl)-2'-deoxyuridine and related 5'-substituted analogues. J Med Chem. 1980 Feb;23(2):127–133. doi: 10.1021/jm00176a005. [DOI] [PubMed] [Google Scholar]
  28. Spector R., Eells J. Deoxynucleoside and vitamin transport into the central nervous system. Fed Proc. 1984 Feb;43(2):196–200. [PubMed] [Google Scholar]
  29. Watanabe K. A., Reichman U., Hirota K., Lopez C., Fox J. J. Nucleosides. 110. Synthesis and antiherpes virus activity of some 2'-fluoro-2'-deoxyarabinofuranosylpyrimidine nucleosides. J Med Chem. 1979 Jan;22(1):21–24. doi: 10.1021/jm00187a005. [DOI] [PubMed] [Google Scholar]
  30. Watanabe K. A., Su T. L., Klein R. S., Chu C. K., Matsuda A., Chun M. W., Lopez C., Fox J. J. Nucleosides. 123. Synthesis of antiviral nucleosides: 5-substituted 1-(2-deoxy-2-halogeno-beta-D-arabinofuranosyl)cytosines and -uracils. Some structure-activity relationships. J Med Chem. 1983 Feb;26(2):152–156. doi: 10.1021/jm00356a007. [DOI] [PubMed] [Google Scholar]
  31. Young C. W., Schneider R., Leyland-Jones B., Armstrong D., Tan C. T., Lopez C., Watanabe K. A., Fox J. J., Philips F. S. Phase I evaluation of 2'-fluoro-5-iodo-1-beta-D-arabinofuranosylcytosine in immunosuppressed patients with herpesvirus infection. Cancer Res. 1983 Oct;43(10):5006–5009. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES