Abstract
Inhibitors of the enzyme bacterial topoisomerase II (DNA gyrase) were evaluated for activity against Trypanosoma cruzi (Brazil strain), based on the theoretical need for a topoisomerase II in the replication of the kinetoplast DNA network. Novobiocin (500 micrograms/ml) antagonized amastigotes of T. cruzi growing in a cell-free medium at 37 degrees C, as manifested by inhibition of multiplication, abnormal morphology of Giemsa-stained organisms, and delayed or absent growth of cells upon subculturing in a drug-free medium. In contrast, novobiocin (1,000 micrograms/ml) essentially had no effect on the multiplication and motility of epimastigotes growing in a cell-free medium at 27 degrees C. This resistance of epimastigotes represented a difference in the physiology of this morphologic stage and not in the temperature of experimentation, because novobiocin inhibited multiplication of amastigotes at 27 degrees C as well and accelerated transformation to epimastigotes. With T. cruzi growing within cultured human fibroblasts, novobiocin (200 micrograms/ml) markedly inhibited transformation of intracellular amastigotes to trypomastigotes. Clorobiocin, a structural analog of novobiocin and likewise an inhibitor of the B subunit of bacterial topoisomerase II, was five times more potent on a molar basis than novobiocin was in antagonism of amastigotes growing in a cell-free medium and did not antagonize epimastigotes. Coumermycin A1, another analog of novobiocin, and five 4-quinolone antibacterial agents, antagonists of the A subunit of bacterial topoisomerase II, inhibited neither amastigotes nor epimastigotes. These experiments indicate that novobiocin and clorobiocin represent a new structural class of drugs with activity against T. cruzi. Whether the mechanism of action of these drugs involves antagonism of a T. cruzi topoisomerase II or an unrelated target is yet to be determined.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROCK T. D. Magnesium binding as an explanation of the mode of action of novobiocin. Science. 1962 Apr 27;136(3513):316–317. doi: 10.1126/science.136.3513.316. [DOI] [PubMed] [Google Scholar]
- Berman J. D., Wyler D. J. An in vitro model for investigation of chemotherapeutic agents in leishmaniasis. J Infect Dis. 1980 Jul;142(1):83–86. doi: 10.1093/infdis/142.1.83. [DOI] [PubMed] [Google Scholar]
- Borst P., Hoeijmakers J. H. Kinetoplast DNA. Plasmid. 1979 Jan;2(1):20–40. doi: 10.1016/0147-619x(79)90003-9. [DOI] [PubMed] [Google Scholar]
- Brener Z. Chemotherapy of Trypanosoma cruzi infections. Adv Pharmacol Chemother. 1975;13:1–81. doi: 10.1016/s1054-3589(08)60229-x. [DOI] [PubMed] [Google Scholar]
- Brener Z. Present status of chemotherapy and chemoprophylaxis of human trypanosomiasis in the Western Hemisphere. Pharmacol Ther. 1979;7(1):71–90. doi: 10.1016/0163-7258(79)90025-1. [DOI] [PubMed] [Google Scholar]
- DiNardo S., Voelkel K., Sternglanz R. DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci U S A. 1984 May;81(9):2616–2620. doi: 10.1073/pnas.81.9.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolak L. The structure of RP 18,631. J Antibiot (Tokyo) 1973 Mar;26(3):121–125. doi: 10.7164/antibiotics.26.121. [DOI] [PubMed] [Google Scholar]
- Douc-Rasy S., Kayser A., Riou G. F. Inhibition of the reactions catalysed by a type I topoisomerase and catenating enzyme of Trypanosoma cruzi by DNA-intercalating drugs. Preferential inhibition of the catenating reaction. EMBO J. 1984 Jan;3(1):11–16. doi: 10.1002/j.1460-2075.1984.tb01754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dvorak J. A., Howe C. L. The effects of Lampit (Bayer 2502) on the interaction of Trypanosoma cruzi with vertebrate cells in vitro. Am J Trop Med Hyg. 1977 Jan;26(1):58–63. doi: 10.4269/ajtmh.1977.26.58. [DOI] [PubMed] [Google Scholar]
- Edenberg H. J. Novobiocin inhibition of simian virus 40 DNA replication. Nature. 1980 Jul 31;286(5772):529–531. doi: 10.1038/286529a0. [DOI] [PubMed] [Google Scholar]
- Englund P. T., Hajduk S. L., Marini J. C. The molecular biology of trypanosomes. Annu Rev Biochem. 1982;51:695–726. doi: 10.1146/annurev.bi.51.070182.003403. [DOI] [PubMed] [Google Scholar]
- Englund P. T., Marini J. C. The replication of kinetoplast DNA. Am J Trop Med Hyg. 1980 Sep;29(5 Suppl):1064–1069. doi: 10.4269/ajtmh.1980.29.1064. [DOI] [PubMed] [Google Scholar]
- FINLAND M., NICHOLS R. L. Novobiocin. Antibiot Chemother. 1957;4:209–392. doi: 10.1159/000386637. [DOI] [PubMed] [Google Scholar]
- Fairweather N. F., Orr E., Holland I. B. Inhibition of deoxyribonucleic acid gyrase: effects on nucleic acid synthesis and cell division in Escherichia coli K-12. J Bacteriol. 1980 Apr;142(1):153–161. doi: 10.1128/jb.142.1.153-161.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gellert M. DNA topoisomerases. Annu Rev Biochem. 1981;50:879–910. doi: 10.1146/annurev.bi.50.070181.004311. [DOI] [PubMed] [Google Scholar]
- Gellert M., Mizuuchi K., O'Dea M. H., Itoh T., Tomizawa J. I. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4772–4776. doi: 10.1073/pnas.74.11.4772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gellert M., O'Dea M. H., Itoh T., Tomizawa J. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4474–4478. doi: 10.1073/pnas.73.12.4474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glassberg J., Miyazaki L., Rifkin M. R. Isolation and partial characterization of mutants of the trypanosomatid Crithidia fasciculata and their use in detecting genetic recombination. J Protozool. 1985 Feb;32(1):118–125. doi: 10.1111/j.1550-7408.1985.tb03025.x. [DOI] [PubMed] [Google Scholar]
- Goto T., Laipis P., Wang J. C. The purification and characterization of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae. J Biol Chem. 1984 Aug 25;259(16):10422–10429. [PubMed] [Google Scholar]
- Gutteridge W. E., Gaborak M., Cover B. Comparative study of SQ 18 506 with other nitroheterocyclic compounds on experimental Chagas' disease. Ann Trop Med Parasitol. 1978 Aug;72(4):339–347. doi: 10.1080/00034983.1978.11719326. [DOI] [PubMed] [Google Scholar]
- Gönnert R., Bock M. The effect of nifurtimox on Trypanosoma cruzi in tissue cultures. Arzneimittelforschung. 1972 Sep;22(9):1582–1586. [PubMed] [Google Scholar]
- Hammond D. J., Cover B., Gutteridge W. E. A novel series of chemical structures active in vitro against the trypomastigote form of Trypanosoma cruzi. Trans R Soc Trop Med Hyg. 1984;78(1):91–95. doi: 10.1016/0035-9203(84)90184-6. [DOI] [PubMed] [Google Scholar]
- Hsieh T., Brutlag D. ATP-dependent DNA topoisonmerase from D. melanogaster reversibly catenates duplex DNA rings. Cell. 1980 Aug;21(1):115–125. doi: 10.1016/0092-8674(80)90119-1. [DOI] [PubMed] [Google Scholar]
- Kreuzer K. N., Cozzarelli N. R. Formation and resolution of DNA catenanes by DNA gyrase. Cell. 1980 May;20(1):245–254. doi: 10.1016/0092-8674(80)90252-4. [DOI] [PubMed] [Google Scholar]
- Liu L. F., Liu C. C., Alberts B. M. Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell. 1980 Mar;19(3):697–707. doi: 10.1016/s0092-8674(80)80046-8. [DOI] [PubMed] [Google Scholar]
- McCabe R. E., Remington J. S., Araujo F. G. In vitro and in vivo activities of formycin B against Trypanosoma cruzi. Antimicrob Agents Chemother. 1985 Apr;27(4):491–494. doi: 10.1128/aac.27.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCabe R. E., Remington J. S., Araujo F. G. Ketoconazole inhibition of intracellular multiplication of Trypanosoma cruzi and protection of mice against lethal infection with the organism. J Infect Dis. 1984 Oct;150(4):594–601. doi: 10.1093/infdis/150.4.594. [DOI] [PubMed] [Google Scholar]
- Medenwald H., Brandau K., Schlossmann K. Quantitative determination of nifurtimox in body fluids of rat, dog and man. Arzneimittelforschung. 1972 Sep;22(9):1613–1617. [PubMed] [Google Scholar]
- Mizuuchi K., Fisher L. M., O'Dea M. H., Gellert M. DNA gyrase action involves the introduction of transient double-strand breaks into DNA. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1847–1851. doi: 10.1073/pnas.77.4.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray P. K., Habbersett M. C., Meurer R. D. Trypanosoma cruzi: efficacy of the 2-substituted, 5-nitroimidazoles, MK-436 and L634,549, in tissue culture and mice. Am J Trop Med Hyg. 1983 Nov;32(6):1242–1250. doi: 10.4269/ajtmh.1983.32.1242. [DOI] [PubMed] [Google Scholar]
- Nakayama K., Sugino A. Novobiocin and nalidixic acid target proteins in yeast. Biochem Biophys Res Commun. 1980 Sep 16;96(1):306–312. doi: 10.1016/0006-291x(80)91215-2. [DOI] [PubMed] [Google Scholar]
- Pan C. T. Cultivation of the leishmaniform stage of Trypanosoma cruzi in cell-free media at different temperatures. Am J Trop Med Hyg. 1968 Nov;17(6):823–832. doi: 10.4269/ajtmh.1968.17.823. [DOI] [PubMed] [Google Scholar]
- Pan S. C. Establishment of clones of Trypanosoma cruzi and their characterization in vitro and in vivo. Bull World Health Organ. 1982;60(1):101–107. [PMC free article] [PubMed] [Google Scholar]
- Pan S. C. Trypanosoma cruzi: in vitro interactions between cultured amastigotes and human skin-muscle cells. Exp Parasitol. 1978 Aug;45(2):274–286. doi: 10.1016/0014-4894(78)90069-3. [DOI] [PubMed] [Google Scholar]
- Pan S. C. Trypanosoma cruzi: intracellular stages grown in a cell-free medium at 37 C. Exp Parasitol. 1978 Aug;45(2):215–224. doi: 10.1016/0014-4894(78)90062-0. [DOI] [PubMed] [Google Scholar]
- Pan S. C. Trypanosoma cruzi: ultrastructure of morphogenesis in vitro and in vivo. Exp Parasitol. 1978 Nov;46(1):92–107. doi: 10.1016/0014-4894(78)90159-5. [DOI] [PubMed] [Google Scholar]
- Shlomai J., Zadok A. Reversible decatenation of kinetoplast DNA by a DNA topoisomerase from trypanosomatids. Nucleic Acids Res. 1983 Jun 25;11(12):4019–4034. doi: 10.1093/nar/11.12.4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steck T. R., Drlica K. Bacterial chromosome segregation: evidence for DNA gyrase involvement in decatenation. Cell. 1984 Apr;36(4):1081–1088. doi: 10.1016/0092-8674(84)90058-8. [DOI] [PubMed] [Google Scholar]
- Sugino A., Peebles C. L., Kreuzer K. N., Cozzarelli N. R. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4767–4771. doi: 10.1073/pnas.74.11.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uemura T., Yanagida M. Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J. 1984 Aug;3(8):1737–1744. doi: 10.1002/j.1460-2075.1984.tb02040.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villalta F., Kierszenbaum F. Growth of isolated amastigotes of Trypanosoma cruzi in cell-free medium. J Protozool. 1982 Nov;29(4):570–576. doi: 10.1111/j.1550-7408.1982.tb01338.x. [DOI] [PubMed] [Google Scholar]
- Wagner K. P., Krassner S. M. Leishmania tarentolae: streptomycin and chloramphenicol resistance of promastigotes. Exp Parasitol. 1976 Apr;39(2):222–233. doi: 10.1016/0014-4894(76)90122-3. [DOI] [PubMed] [Google Scholar]
- Wright H. T., Nurse K. C., Goldstein D. J. Nalidixic acid, oxolinic acid, and novobiocin inhibit yeast glycyl- and leucyl-transfer RNA synthetases. Science. 1981 Jul 24;213(4506):455–456. doi: 10.1126/science.7017932. [DOI] [PubMed] [Google Scholar]

