Abstract
The pharmacokinetics and urinary excretion of nine glycopeptide antibiotics with diverse pIs (3.8 to 8.5) and lipophilicities were studied. The disposition of the aridicin antibiotics and their hydrolysis products were examined in male CD-1 mice after subcutaneous and intravenous administration and compared with the disposition of teicoplanin, ristocetin, and vancomycin. The total systemic clearance, half-life, volume of distribution, and urinary excretion were highly correlated with pIs. In general, as the pI decreased, the clearance, urinary recovery, and volume of distribution decreased, whereas the half-life increased. With those glycopeptides that had similar pIs, clearance decreased and half-life increased with increasing lipophilicity. The urinary recovery of the glycopeptides decreased with decreasing pI and increasing lipophilicity. Because vancomycin (pI = 8.0) is cleared by glomerular filtration, increased binding to serum is the likely mechanism of reduced renal clearance for glycopeptides with low pIs. These results are consistent with previous findings concerning the correlation of physical-chemical properties and the drug disposition of small organic molecules. Results of these studies also indicate that desirable pharmacokinetic properties can be incorporated into glycopeptides through semisynthetic modifications.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Actor P., Uri J. V., Zajac I., Guarini J. R., Phillips L., Pitkin D. H., Berges D. A., Dunn G. L., Hoover J. R., Weisbach J. A. SK&F 75073, new parenteral broad-spectrum cephalosporin with high and prolonged serum levels. Antimicrob Agents Chemother. 1978 May;13(5):784–790. doi: 10.1128/aac.13.5.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Angehrn P., Probst P. J., Reiner R., Then R. L. Ro 13-9904, a long-acting broad-spectrum cephalosporin: in vitro and in vivo studies. Antimicrob Agents Chemother. 1980 Dec;18(6):913–921. doi: 10.1128/aac.18.6.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benet L. Z., Galeazzi R. L. Noncompartmental determination of the steady-state volume of distribution. J Pharm Sci. 1979 Aug;68(8):1071–1074. doi: 10.1002/jps.2600680845. [DOI] [PubMed] [Google Scholar]
- Craig W. A., Welling P. G. Protein binding of antimicrobials: clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet. 1977 Jul-Aug;2(4):252–268. doi: 10.2165/00003088-197702040-00002. [DOI] [PubMed] [Google Scholar]
- Gomeni R. PHARM--an interactive graphic program for individual and population pharmacokinetic parameter estimation. Comput Biol Med. 1984;14(1):25–34. doi: 10.1016/0010-4825(84)90017-9. [DOI] [PubMed] [Google Scholar]
- Grappel S. F., Giovenella A. J., Phillips L., Pitkin D. H., Nisbet L. J. Antimicrobial activity of aridicins, novel glycopeptide antibiotics with high and prolonged levels in blood. Antimicrob Agents Chemother. 1985 Nov;28(5):660–662. doi: 10.1128/aac.28.5.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henner J., Sitrin R. D. Isoelectric focusing and electrophoretic titration of antibiotics using bioautographic detection. J Antibiot (Tokyo) 1984 Nov;37(11):1475–1478. doi: 10.7164/antibiotics.37.1475. [DOI] [PubMed] [Google Scholar]
- Hinderling P. H., Schmidlin O., Seydel J. K. Quantitative relationships between structure and pharmacokinetics of beta-adrenoceptor blocking agents in man. J Pharmacokinet Biopharm. 1984 Jun;12(3):263–287. doi: 10.1007/BF01061721. [DOI] [PubMed] [Google Scholar]
- Malabarba A., Strazzolini P., Depaoli A., Landi M., Berti M., Cavalleri B. Teicoplanin, antibiotics from Actinoplanes teichomyceticus nov. sp. VI. Chemical degradation: physico-chemical and biological properties of acid hydrolysis products. J Antibiot (Tokyo) 1984 Sep;37(9):988–999. doi: 10.7164/antibiotics.37.988. [DOI] [PubMed] [Google Scholar]
- Seydel J. K., Trettin D., Cordes H. P., Wassermann O., Malyusz M. Quantitative structure-pharmacokinetic relationships derived on antibacterial sulfonamides in rats and its comparison to quantitative structure-activity relationships. J Med Chem. 1980 Jun;23(6):607–613. doi: 10.1021/jm00180a005. [DOI] [PubMed] [Google Scholar]
- Shearer M. C., Actor P., Bowie B. A., Grappel S. F., Nash C. H., Newman D. J., Oh Y. K., Pan C. H., Nisbet L. J. Aridicins, novel glycopeptide antibiotics. I. Taxonomy, production and biological activity. J Antibiot (Tokyo) 1985 May;38(5):555–560. doi: 10.7164/antibiotics.38.555. [DOI] [PubMed] [Google Scholar]
- Sitrin R. D., Chan G. W., Dingerdissen J. J., Holl W., Hoover J. R., Valenta J. R., Webb L., Snader K. M. Aridicins, novel glycopeptide antibiotics. II. Isolation and characterization. J Antibiot (Tokyo) 1985 May;38(5):561–571. doi: 10.7164/antibiotics.38.561. [DOI] [PubMed] [Google Scholar]
- Toon S., Rowland M. Structure-pharmacokinetic relationships among the barbiturates in the rat. J Pharmacol Exp Ther. 1983 Jun;225(3):752–763. [PubMed] [Google Scholar]
- Traina G. L., Bonati M. Pharmacokinetics of teicoplanin in man after intravenous administration. J Pharmacokinet Biopharm. 1984 Apr;12(2):119–128. doi: 10.1007/BF01059273. [DOI] [PubMed] [Google Scholar]
- Verbist L., Tjandramaga B., Hendrickx B., Van Hecken A., Van Melle P., Verbesselt R., Verhaegen J., De Schepper P. J. In vitro activity and human pharmacokinetics of teicoplanin. Antimicrob Agents Chemother. 1984 Dec;26(6):881–886. doi: 10.1128/aac.26.6.881. [DOI] [PMC free article] [PubMed] [Google Scholar]