Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1986 Mar;29(3):474–481. doi: 10.1128/aac.29.3.474

Effect of tobramycin on protein synthesis in 2-deoxystreptamine aminoglycoside-resistant clinical isolates of Haemophilus influenzae.

J Levy, J L Burns, P M Mendelman, K Wong, K Mack, A L Smith
PMCID: PMC180417  PMID: 3487286

Abstract

Clinical isolates of Haemophilus influenzae resistant to a broad range of 2-deoxystreptamine aminoglycosides (2-DAM) were studied. The gene responsible for resistance could be mobilized by transformation into a 2-DAM susceptible laboratory strain of H. influenzae, enabling isogenic comparisons. The transformants had the same resistance phenotype as the parental strains. There was close linkage between 2-DAM resistance and streptomycin resistance, a chromosomal marker, but weak linkage between 2-DAM and erythromycin resistance. Resistant transformants exhibited a decreased accumulation of gentamicin due to the absence of the rapid, energy-dependent phase of uptake. Resistance was not through metabolic inactivation of the antibiotic; no aminoglycoside-acetylating, -adenylylating, or -phosphorylating activity was detected in the wild-type strains or in the 2-DAM-resistant transformants. Protein synthesis in 2-DAM-susceptible H. influenzae strains increased in the presence of low (1 microgram/ml) and moderate (50 micrograms/ml) concentrations of tobramycin. With higher concentrations (100 and 500 micrograms/ml), protein synthesis was progressively inhibited. In contrast, protein synthesis in 2-DAM-resistant clinical isolates and transformants was inhibited by 1 microgram of tobramycin per ml, and inhibition increased with higher drug concentrations. Since the stimulating effect of low concentrations of tobramycin in susceptible H. influenzae strains is probably due to misreading, these findings suggest that 2-DAM-resistant strains of H. influenzae have reduced sensitivity to misreading, indicating that altered ribosomes are responsible for the resistance.

Full text

PDF
474

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER H. E., LEIDY G. Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type-specific cells. J Exp Med. 1951 Apr 1;93(4):345–359. doi: 10.1084/jem.93.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benveniste R., Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem. 1973;42:471–506. doi: 10.1146/annurev.bi.42.070173.002351. [DOI] [PubMed] [Google Scholar]
  3. Bryan L. E., Haraphongse R., Van den Elzen H. M. Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J Antibiot (Tokyo) 1976 Jul;29(7):743–753. doi: 10.7164/antibiotics.29.743. [DOI] [PubMed] [Google Scholar]
  4. Bryan L. E., Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother. 1983 Jun;23(6):835–845. doi: 10.1128/aac.23.6.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bryan L. E., Van den Elzen H. M. Streptomycin accumulation in susceptible and resistant strains of Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1976 Jun;9(6):928–938. doi: 10.1128/aac.9.6.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buckel P., Buchberger A., Böck A., Wittmann H. G. Alteration of ribosomal protein L6 in mutants of Escherichia coli resistant to gentamicin. Mol Gen Genet. 1977 Dec 14;158(1):47–54. doi: 10.1007/BF00455118. [DOI] [PubMed] [Google Scholar]
  7. Catlin B. W., Bendler J. W., 3rd, Goodgal S. H. The type b capsulation locus of Haemophilus influenzae: map location and size. J Gen Microbiol. 1972 May;70(3):411–422. doi: 10.1099/00221287-70-3-411. [DOI] [PubMed] [Google Scholar]
  8. Cox G. B., Young I. G., McCann L. M., Gibson F. Biosynthesis of ubiquinone in Escherichia coli K-12: location of genes affecting the metabolism of 3-octaprenyl-4-hydroxybenzoic acid and 2-octaprenylphenol. J Bacteriol. 1969 Aug;99(2):450–458. doi: 10.1128/jb.99.2.450-458.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davies J., Davis B. D. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem. 1968 Jun 25;243(12):3312–3316. [PubMed] [Google Scholar]
  10. Davies J., Gorini L., Davis B. D. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol. 1965 Jul;1(1):93–106. [PubMed] [Google Scholar]
  11. Davies J., Smith D. I. Plasmid-determined resistance to antimicrobial agents. Annu Rev Microbiol. 1978;32:469–518. doi: 10.1146/annurev.mi.32.100178.002345. [DOI] [PubMed] [Google Scholar]
  12. Dickie P., Bryan L. E., Pickard M. A. Effect of enzymatic adenylylation on dihydrostreptomycin accumulation in Escherichia coli carrying an R-factor: model explaining aminoglycoside resistance by inactivating mechanisms. Antimicrob Agents Chemother. 1978 Oct;14(4):569–580. doi: 10.1128/aac.14.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Emerson B. B., Smith A. L., Harding A. L., Smith D. H. Hemophilus influenzae type B susceptibility to 17 antibiotics. J Pediatr. 1975 Apr;86(4):617–620. doi: 10.1016/s0022-3476(75)80166-1. [DOI] [PubMed] [Google Scholar]
  14. Felix H., Nüesch J., Wehrli W. A convenient method for permeabilizing the fungus Cephalosporium acremonium. Anal Biochem. 1980 Mar 15;103(1):81–86. doi: 10.1016/0003-2697(80)90240-7. [DOI] [PubMed] [Google Scholar]
  15. Hancock R. E. Aminoglycoside uptake and mode of action--with special reference to streptomycin and gentamicin. I. Antagonists and mutants. J Antimicrob Chemother. 1981 Oct;8(4):249–276. doi: 10.1093/jac/8.4.249. [DOI] [PubMed] [Google Scholar]
  16. Herriott R. M., Meyer E. M., Vogt M. Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol. 1970 Feb;101(2):517–524. doi: 10.1128/jb.101.2.517-524.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoiby N., Kilian M. Haemophilus from the lower respiratory tract of patients with cystic fibrosis. Scand J Respir Dis. 1976;57(3):103–107. [PubMed] [Google Scholar]
  18. Kühberger R., Piepersberg W., Petzet A., Buckel P., Böck A. Alteration of ribosomal protein L6 in gentamicin-resistant strains of Escherichia coli. Effects on fidelity of protein synthesis. Biochemistry. 1979 Jan 9;18(1):187–193. doi: 10.1021/bi00568a028. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Levy J., Smith A. L., Kenny M. A., Ramsey B., Schoenknecht F. D. Bioactivity of gentamicin in purulent sputum from patients with cystic fibrosis or bronchiectasis: comparison with activity in serum. J Infect Dis. 1983 Dec;148(6):1069–1076. doi: 10.1093/infdis/148.6.1069. [DOI] [PubMed] [Google Scholar]
  21. May J. R., Herrick N. C., Thompson D. Bacterial infection in cystic fibrosis. Arch Dis Child. 1972 Dec;47(256):908–913. doi: 10.1136/adc.47.256.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meyers J. A., Sanchez D., Elwell L. P., Falkow S. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol. 1976 Sep;127(3):1529–1537. doi: 10.1128/jb.127.3.1529-1537.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Michalka J., Goodgal S. H. Genetic and physical map of the chromosome of Hemophilus influenzae. J Mol Biol. 1969 Oct 28;45(2):407–421. doi: 10.1016/0022-2836(69)90115-6. [DOI] [PubMed] [Google Scholar]
  24. Modolell J., Davis B. D. Rapid inhibition of polypeptide chain extension by streptomycin. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1279–1286. doi: 10.1073/pnas.61.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murray B. E., Moellering R. C., Jr In-vivo acquisition of two different types of aminoglycoside resistance by a single strain of Klebsiella pneumoniae causing severe infection. Ann Intern Med. 1982 Feb;96(2):176–180. doi: 10.7326/0003-4819-96-2-176. [DOI] [PubMed] [Google Scholar]
  26. Roberts D. E., Cole P. Use of selective media in bacteriological investigation of patients with chronic suppurative respiratory infection. Lancet. 1980 Apr 12;1(8172):796–797. doi: 10.1016/s0140-6736(80)91295-7. [DOI] [PubMed] [Google Scholar]
  27. Roberts M. C., Swenson C. D., Owens L. M., Smith A. L. Characterization of chloramphenicol-resistant Haemophilus influenzae. Antimicrob Agents Chemother. 1980 Oct;18(4):610–615. doi: 10.1128/aac.18.4.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roberts M., Stull T. L., Smith A. L. Comparative virulence of Haemophilus influenzae with a type b or type d capsule. Infect Immun. 1981 May;32(2):518–524. doi: 10.1128/iai.32.2.518-524.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubens C. E., McNeill W. F., Farrar W. E., Jr Evolution of multiple-antibiotic-resistance plasmids mediated by transposable plasmid deoxyribonucleic acid sequences. J Bacteriol. 1979 Nov;140(2):713–719. doi: 10.1128/jb.140.2.713-719.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith A. L., Smith D. H. Gentamicin:adenine mononucleotide transferase: partial purification, characterization, and use in the clinical quantitation of gentamicin. J Infect Dis. 1974 Apr;129(4):391–401. doi: 10.1093/infdis/129.4.391. [DOI] [PubMed] [Google Scholar]
  31. Smith C. B., Golden C. A., Kanner R. E., Renzetti A. D. Haemophilus influenzae and haemophilus parainfluenzae in chronic obstructive pulmonary disease. Lancet. 1976 Jun 12;1(7972):1253–1255. doi: 10.1016/s0140-6736(76)91733-5. [DOI] [PubMed] [Google Scholar]
  32. Tai P. C., Davis B. D. Triphasic concentration effects of gentamicin on activity and misreading in protein synthesis. Biochemistry. 1979 Jan 9;18(1):193–198. doi: 10.1021/bi00568a029. [DOI] [PubMed] [Google Scholar]
  33. Vaudaux P., Waldvogel F. A. Gentamicin inactivation in purulent exudates: role of cell lysis. J Infect Dis. 1980 Oct;142(4):586–593. doi: 10.1093/infdis/142.4.586. [DOI] [PubMed] [Google Scholar]
  34. Vosberg H. P., Hoffmann-Berling H. DNA synthesis in nucleotide-permeable Escherichia coli cells. I. Preparation and properties of ether-treated cells. J Mol Biol. 1971 Jun 28;58(3):739–753. doi: 10.1016/0022-2836(71)90037-4. [DOI] [PubMed] [Google Scholar]
  35. Wallace B. J., Tai P. C., Herzog E. L., Davis B. D. Partial inhibition of polysomal ribosomes of Escherichia coli by streptomycin. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1234–1237. doi: 10.1073/pnas.70.4.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Washington J. A., 2nd, Snyder R. J., Kohner P. C., Wiltse C. G., Ilstrup D. M., McCall J. T. Effect of cation content of agar on the activity of gentamicin, tobramycin, and amikacin against Pseudomonas aeruginosa. J Infect Dis. 1978 Feb;137(2):103–111. doi: 10.1093/infdis/137.2.103. [DOI] [PubMed] [Google Scholar]
  37. Wong K., Roberts M. C., Owens L., Fife M., Smith A. L. Selective media for the quantitation of bacteria in cystic fibrosis sputum. J Med Microbiol. 1984 Apr;17(2):113–119. doi: 10.1099/00222615-17-2-113. [DOI] [PubMed] [Google Scholar]
  38. Zierhut G., Piepersberg W., Böck A. Comparative analysis of the effect of aminoglycosides on bacterial protein synthesis in vitro. Eur J Biochem. 1979 Aug 1;98(2):577–583. doi: 10.1111/j.1432-1033.1979.tb13219.x. [DOI] [PubMed] [Google Scholar]
  39. de Louvois J., Hurley R. Inactivation of penicillin by purulent exudates. Br Med J. 1977 Apr 16;1(6067):998–1000. doi: 10.1136/bmj.1.6067.998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES