Abstract
The multiple stages of derepression of the type I chromosomal beta-lactamase in Pseudomonas aeruginosa were examined. Mutants partially and fully derepressed for beta-lactamase were selected from a wild-type clinical isolate. An analysis of the beta-lactamase produced by these mutants and the induced wild type revealed significant differences in the products of derepression at each stage. Beta-lactamase produced by the fully derepressed mutant showed a lower affinity (Km, 0.113 mM) for cephalothin than that produced by the partially derepressed mutant (Km, 0.049 mM). However, due to a very large Vmax, the former possessed a much greater hydrolytic efficiency. Differences in substrate profile were also noted. Only beta-lactamase from the fully derepressed mutant hydrolyzed cefamandole, cefoperazone, and cefonicid. The partially derepressed mutant possessed a single beta-lactamase band with a pI of 8.4. The fully derepressed mutant possessed this band and an additional major band with a pI of 7.5. Induction of the wild type with cefoxitin produced both bands. The changes in physiologic parameters of the enzymes produced in the different stages of derepression suggest a complex system for beta-lactamase expression in P. aeruginosa. This may involve at least two distinct structural regions, each of which is under control of the same repressor.
Full text
PDF![453](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc6a/180579/45edc35476ad/aac00164-0143.png)
![454](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc6a/180579/2f8c52ffd12e/aac00164-0144.png)
![455](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc6a/180579/063f7c46e3c7/aac00164-0145.png)
![456](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc6a/180579/a4b9c938cf27/aac00164-0146.png)
![457](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc6a/180579/7c195181bf26/aac00164-0147.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berks M., Redhead K., Abraham E. P. Isolation and properties of an inducible and a constitutive beta-lactamase from Pseudomonas aeruginosa. J Gen Microbiol. 1982 Jan;128(1):155–159. doi: 10.1099/00221287-128-1-155. [DOI] [PubMed] [Google Scholar]
- Bryan L. E., Kwan S., Godfrey A. J. Resistance of Pseudomonas aeruginosa mutants with altered control of chromosomal beta-lactamase to piperacillin, ceftazidime, and cefsulodin. Antimicrob Agents Chemother. 1984 Mar;25(3):382–384. doi: 10.1128/aac.25.3.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis N. A., Orr D., Boulton M. G., Ross G. W. Penicillin-binding proteins of Pseudomonas aeruginosa. Comparison of two strains differing in their resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1981 Feb;7(2):127–136. doi: 10.1093/jac/7.2.127. [DOI] [PubMed] [Google Scholar]
- Flett F., Curtis N. A., Richmond M. H. Mutant of Pseudomonas aeruginosa 18S that synthesizes type Id beta-lactamase constitutively. J Bacteriol. 1976 Sep;127(3):1585–1586. doi: 10.1128/jb.127.3.1585-1586.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gootz T. D., Sanders C. C., Goering R. V. Resistance to cefamandole: derepression of beta-lactamases by cefoxitin and mutation in Enterobacter cloacae. J Infect Dis. 1982 Jul;146(1):34–42. doi: 10.1093/infdis/146.1.34. [DOI] [PubMed] [Google Scholar]
- Gwynn M. N., Rolinson G. N. Selection of variants of Gram-negative bacteria with elevated production of type 1 beta-lactamase. J Antimicrob Chemother. 1983 Jun;11(6):577–581. doi: 10.1093/jac/11.6.577. [DOI] [PubMed] [Google Scholar]
- Hamilton-Miller J. M. beta-Lactamases and their clinical significance. J Antimicrob Chemother. 1982 Feb;9 (Suppl B):11–19. doi: 10.1093/jac/9.suppl_b.11. [DOI] [PubMed] [Google Scholar]
- Jacobs J. Y., Livermore D. M., Davy K. W. Pseudomonas aeruginosa beta-lactamase as a defence against azlocillin, mezlocillin and piperacillin. J Antimicrob Chemother. 1984 Sep;14(3):221–229. doi: 10.1093/jac/14.3.221. [DOI] [PubMed] [Google Scholar]
- King A., Shannon K., Eykyn S., Phillips I. Reduced sensitivity to beta-lactam antibiotics arising during ceftazidime treatment of Pseudomonas aeruginosa infections. J Antimicrob Chemother. 1983 Oct;12(4):363–370. doi: 10.1093/jac/12.4.363. [DOI] [PubMed] [Google Scholar]
- Kliebe C., Nies B. A., Meyer J. F., Tolxdorff-Neutzling R. M., Wiedemann B. Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother. 1985 Aug;28(2):302–307. doi: 10.1128/aac.28.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labia R., Fabre C., Guionie M. Etude cinétique d'une nouvelle céphalosporinase de Pseudomonas aeruginosa. Biochimie. 1976;58(8):913–915. doi: 10.1016/s0300-9084(76)80279-9. [DOI] [PubMed] [Google Scholar]
- Livermore D. M. Kinetics and significance of the activity of the Sabath and Abrahams' beta-lactamase of Pseudomonas aeruginosa against cefotaxime and cefsulodin. J Antimicrob Chemother. 1983 Feb;11(2):169–179. doi: 10.1093/jac/11.2.169. [DOI] [PubMed] [Google Scholar]
- Livermore D. M., Williams R. J., Lindridge M. A., Slack R. C., Williams J. D. Pseudomonas aeruginosa isolates with modified beta-lactamase inducibility: effects on beta-lactam sensitivity. Lancet. 1982 Jun 26;1(8287):1466–1467. doi: 10.1016/s0140-6736(82)92474-6. [DOI] [PubMed] [Google Scholar]
- Matthew M., Harris A. M. Identification of beta-lactamases by analytical isoelectric focusing: correlation with bacterial taxonomy. J Gen Microbiol. 1976 May;94(1):55–67. doi: 10.1099/00221287-94-1-55. [DOI] [PubMed] [Google Scholar]
- Murata T., Minami S., Yasuda K., Iyobe S., Inoue M., Mitsuhashi S. Purification and properties of cephalosporinase from Pseudomonas aeruginosa. J Antibiot (Tokyo) 1981 Sep;34(9):1164–1170. doi: 10.7164/antibiotics.34.1164. [DOI] [PubMed] [Google Scholar]
- Preheim L. C., Penn R. G., Sanders C. C., Goering R. V., Giger D. K. Emergence of resistance to beta-lactam and aminoglycoside antibiotics during moxalactam therapy of Pseudomonas aeruginosa infections. Antimicrob Agents Chemother. 1982 Dec;22(6):1037–1041. doi: 10.1128/aac.22.6.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richmond M. H., Sykes R. B. The beta-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol. 1973;9:31–88. doi: 10.1016/s0065-2911(08)60376-8. [DOI] [PubMed] [Google Scholar]
- SABATH L. D., ABRAHAM E. P. SYNERGISTIC ACTION OF PENICILLINS AND CEPHALOSPORINS AGAINST PSEUDOMONAS PYOCYANEA. Nature. 1964 Dec 12;204:1066–1069. doi: 10.1038/2041066a0. [DOI] [PubMed] [Google Scholar]
- Sabath L. D., Jago M., Abraham E. P. Cephalosporinase and penicillinase activities of a beta-lactamase from Pseudomonas pyocyanea. Biochem J. 1965 Sep;96(3):739–752. doi: 10.1042/bj0960739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders C. C., Sanders W. E., Jr Microbial resistance to newer generation beta-lactam antibiotics: clinical and laboratory implications. J Infect Dis. 1985 Mar;151(3):399–406. doi: 10.1093/infdis/151.3.399. [DOI] [PubMed] [Google Scholar]
- Shannon K., King A., Phillips I. Development of resistance to beta-lactam antibiotics during therapy of Pseudomonas aeruginosa infections. Lancet. 1982 Jun 26;1(8287):1466–1466. doi: 10.1016/s0140-6736(82)92473-4. [DOI] [PubMed] [Google Scholar]
- Vecoli C., Prevost F. E., Ververis J. J., Medeiros A. A., O'Leary G. P., Jr Comparison of polyacrylamide and agarose gel thin-layer isoelectric focusing for the characterization of beta-lactamases. Antimicrob Agents Chemother. 1983 Aug;24(2):186–189. doi: 10.1128/aac.24.2.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. J., Livermore D. M., Lindridge M. A., Said A. A., Williams J. D. Mechanisms of beta-lactam resistance in British isolates of Pseudomonas aeruginosa. J Med Microbiol. 1984 Jun;17(3):283–293. doi: 10.1099/00222615-17-3-283. [DOI] [PubMed] [Google Scholar]