Abstract
Cognitive function. There is reasonably good evidence that mental and motor developmental test scores are lower among infants with iron deficiency anemia. Although the research on cognitive function in iron deficient older children and adults is sparse and diverse, it suggests that there may be alterations in attentional processes associated with iron deficiency. Iron therapy has not yet been shown effective in completely correcting many of the observed disturbances. Although some aspects of cognitive function seem to change with iron therapy, lower developmental. I.Q., and achievement test scores have still been noted after treatment. The behavioral effects of iron-deficiency anemia may be due to changes in neurotransmission. However, the biochemical bases are not yet completely understood. Noncognitive disturbances. A variety of noncognitive alterations during infant developmental testing has also been observed, including failure to respond to test stimuli, short attention span, unhappiness, increased fearfulness, withdrawal from the examiner, and increased body tension. Exploratory analyses suggest that such behavioral abnormalities may account for poor developmental test performance in infants with iron deficiency anemia. These studies indicate the fruitfulness of examining noncognitive aspects of behavior such as affect, attention, and activity, in addition to specific cognitive processes. Activity and work capacity: There has been a steady accumulation of evidence that iron-deficiency anemia limits maximal physical performance, submaximal endurance, and spontaneous activity in the adult, resulting in diminished work productivity with attendant economic losses. The relative importance of central and peripheral mechanisms underlying these effects, the extent to which anemia or iron deficiency separate from anemia is responsible, and the counterpart in infants and children remain to be established. This essay has examined recent evidence from research on central nervous system biochemistry and from human studies that iron deficiency adversely affects behavior by impairing cognitive function, producing noncognitive disturbances, and limiting activity and work capacity. The body of research taken as a whole provides increasingly persuasive arguments for intensifying efforts to prevent and treat iron deficiency anemia.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aukett M. A., Parks Y. A., Scott P. H., Wharton B. A. Treatment with iron increases weight gain and psychomotor development. Arch Dis Child. 1986 Sep;61(9):849–857. doi: 10.1136/adc.61.9.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barkey R. J., Ben-Shachar D., Amit T., Youdim M. B. Increased hepatic and reduced prostatic prolactin (PRL) binding in iron deficiency and during neuroleptic treatment: correlation with changes in serum PRL and testosterone. Eur J Pharmacol. 1985 Feb 26;109(2):193–200. doi: 10.1016/0014-2999(85)90420-0. [DOI] [PubMed] [Google Scholar]
- Basta S. S., Soekirman, Karyadi D., Scrimshaw N. S. Iron deficiency anemia and the productivity of adult males in Indonesia. Am J Clin Nutr. 1979 Apr;32(4):916–925. doi: 10.1093/ajcn/32.4.916. [DOI] [PubMed] [Google Scholar]
- Ben-Shachar D., Ashkenazi R., Youdim M. B. Long-term consequence of early iron-deficiency on dopaminergic neurotransmission in rats. Int J Dev Neurosci. 1986;4(1):81–88. doi: 10.1016/0736-5748(86)90019-5. [DOI] [PubMed] [Google Scholar]
- Charlton R. W., Derman D., Skikne B., Torrance J. D., Lynch S. R., Sayers M. H., Zwi S., Goldman H. I., Van As A., Margo G. Anaemia, iron deficiency and exercise: extended studies in human subjects. Clin Sci Mol Med. 1977 Dec;53(6):537–541. doi: 10.1042/cs0530537. [DOI] [PubMed] [Google Scholar]
- Dallman P. R. Biochemical basis for the manifestations of iron deficiency. Annu Rev Nutr. 1986;6:13–40. doi: 10.1146/annurev.nu.06.070186.000305. [DOI] [PubMed] [Google Scholar]
- Dallman P. R., Siimes M. A., Manies E. C. Brain iron: persistent deficiency following short-term iron deprivation in the young rat. Br J Haematol. 1975 Oct;31(2):209–215. doi: 10.1111/j.1365-2141.1975.tb00851.x. [DOI] [PubMed] [Google Scholar]
- Davies C. T., Chukweumeka A. C., Van Haaren J. P. Iron-deficiency anaemia: its effect on maximum aerobic power and responses to exercise in African males aged 17-40 years. Clin Sci. 1973 Jun;44(6):555–562. doi: 10.1042/cs0440555. [DOI] [PubMed] [Google Scholar]
- DeMaeyer E., Adiels-Tegman M. The prevalence of anaemia in the world. World Health Stat Q. 1985;38(3):302–316. [PubMed] [Google Scholar]
- Delinard A., Gilbert A., Dodds M., Egeland B. Iron deficiency and behavioral deficits. Pediatrics. 1981 Dec;68(6):828–833. [PubMed] [Google Scholar]
- Depue R. A., Spoont M. R. Conceptualizing a serotonin trait. A behavioral dimension of constraint. Ann N Y Acad Sci. 1986;487:47–62. doi: 10.1111/j.1749-6632.1986.tb27885.x. [DOI] [PubMed] [Google Scholar]
- Edgerton V. R., Gardner G. W., Ohira Y., Gunawardena K. A., Senewiratne B. Iron-deficiency anaemia and its effect on worker productivity and activity patterns. Br Med J. 1979 Dec 15;2(6204):1546–1549. doi: 10.1136/bmj.2.6204.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekblom B., Goldbarg A. N., Gullbring B. Response to exercise after blood loss and reinfusion. J Appl Physiol. 1972 Aug;33(2):175–180. doi: 10.1152/jappl.1972.33.2.175. [DOI] [PubMed] [Google Scholar]
- Finch C. A., Gollnick P. D., Hlastala M. P., Miller L. R., Dillmann E., Mackler B. Lactic acidosis as a result of iron deficiency. J Clin Invest. 1979 Jul;64(1):129–137. doi: 10.1172/JCI109431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Findlay E., Ng K. T., Reid R. L., Armstrong S. M. Developmental changes in body iron status following prolonged iron depletion in the rat. Physiol Behav. 1981 Dec;27(6):1097–1102. doi: 10.1016/0031-9384(81)90376-0. [DOI] [PubMed] [Google Scholar]
- Gabrielsson B., Robson T., Norris D., Chung S. H. Effects of divalent metal ions on the uptake of glutamate and GABA from synaptosomal fractions. Brain Res. 1986 Oct 8;384(2):218–223. doi: 10.1016/0006-8993(86)91157-1. [DOI] [PubMed] [Google Scholar]
- Gardner G. W., Edgerton V. R., Senewiratne B., Barnard R. J., Ohira Y. Physical work capacity and metabolic stress in subjects with iron deficiency anemia. Am J Clin Nutr. 1977 Jun;30(6):910–917. doi: 10.1093/ajcn/30.6.910. [DOI] [PubMed] [Google Scholar]
- Gopaldas T., Kale M., Bhardwaj P. Prophylactic iron supplementation for underprivileged school boys. II. Impact on selected tests of cognitive function. Indian Pediatr. 1985 Oct;22(10):737–743. [PubMed] [Google Scholar]
- Grindulis H., Scott P. H., Belton N. R., Wharton B. A. Combined deficiency of iron and vitamin D in Asian toddlers. Arch Dis Child. 1986 Sep;61(9):843–848. doi: 10.1136/adc.61.9.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALLGREN B., SOURANDER P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958 Oct;3(1):41–51. doi: 10.1111/j.1471-4159.1958.tb12607.x. [DOI] [PubMed] [Google Scholar]
- Hill J. M. Iron concentration reduced in ventral pallidum, globus pallidus, and substantia nigra by GABA-transaminase inhibitor, gamma-vinyl GABA. Brain Res. 1985 Sep 2;342(1):18–25. doi: 10.1016/0006-8993(85)91348-4. [DOI] [PubMed] [Google Scholar]
- Hill J. M., Switzer R. C., 3rd The regional distribution and cellular localization of iron in the rat brain. Neuroscience. 1984 Mar;11(3):595–603. doi: 10.1016/0306-4522(84)90046-0. [DOI] [PubMed] [Google Scholar]
- Kaladhar M., Rao B. S. Effect of maternal iron deficiency in rat on serotonin uptake in vitro by brain synaptic vesicles in the offspring. J Neurochem. 1983 Jun;40(6):1768–1770. doi: 10.1111/j.1471-4159.1983.tb08155.x. [DOI] [PubMed] [Google Scholar]
- Lozoff B. Behavioral alterations in iron deficiency. Adv Pediatr. 1988;35:331–359. [PubMed] [Google Scholar]
- Lozoff B., Brittenham G. M. Behavioral aspects of iron deficiency. Prog Hematol. 1986;14:23–53. [PubMed] [Google Scholar]
- Lozoff B., Brittenham G. M., Viteri F. E., Wolf A. W., Urrutia J. J. The effects of short-term oral iron therapy on developmental deficits in iron-deficient anemic infants. J Pediatr. 1982 Mar;100(3):351–357. doi: 10.1016/s0022-3476(82)80428-9. [DOI] [PubMed] [Google Scholar]
- Lozoff B., Brittenham G. M., Wolf A. W., McClish D. K., Kuhnert P. M., Jimenez E., Jimenez R., Mora L. A., Gomez I., Krauskoph D. Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics. 1987 Jun;79(6):981–995. [PubMed] [Google Scholar]
- Lozoff B., Klein N. K., Prabucki K. M. Iron-deficient anemic infants at play. J Dev Behav Pediatr. 1986 Jun;7(3):152–158. [PubMed] [Google Scholar]
- Lozoff B., Wolf A. W., Urrutia J. J., Viteri F. E. Abnormal behavior and low developmental test scores in iron-deficient anemic infants. J Dev Behav Pediatr. 1985 Apr;6(2):69–75. [PubMed] [Google Scholar]
- McLane J. A., Fell R. D., McKay R. H., Winder W. W., Brown E. B., Holloszy J. O. Physiological and biochemical effects of iron deficiency on rat skeletal muscle. Am J Physiol. 1981 Jul;241(1):C47–C54. doi: 10.1152/ajpcell.1981.241.1.C47. [DOI] [PubMed] [Google Scholar]
- Ohira Y., Edgerton V. R., Gardner G. W., Gunawardena K. A., Senewiratne B., Ikawa S. Work capacity after iron treatment as a function of hemoglobin and iron deficiency. J Nutr Sci Vitaminol (Tokyo) 1981;27(2):87–96. doi: 10.3177/jnsv.27.87. [DOI] [PubMed] [Google Scholar]
- Ohira Y., Edgerton V. R., Gardner G. W., Senewiratne B., Barnard R. J., Simpson D. R. Work capacity, heart rate and blood lactate responses to iron treatment. Br J Haematol. 1979 Mar;41(3):365–372. doi: 10.1111/j.1365-2141.1979.tb05869.x. [DOI] [PubMed] [Google Scholar]
- Oski F. A., Honig A. S., Helu B., Howanitz P. Effect of iron therapy on behavior performance in nonanemic, iron-deficient infants. Pediatrics. 1983 Jun;71(6):877–880. [PubMed] [Google Scholar]
- Oski F. A., Honig A. S. The effects of therapy on the developmental scores of iron-deficient infants. J Pediatr. 1978 Jan;92(1):21–25. doi: 10.1016/s0022-3476(78)80063-8. [DOI] [PubMed] [Google Scholar]
- Palti H., Meijer A., Adler B. Learning achievement and behavior at school of anemic and non-anemic infants. Early Hum Dev. 1985 Jan;10(3-4):217–223. doi: 10.1016/0378-3782(85)90052-0. [DOI] [PubMed] [Google Scholar]
- Phillips A. G., Carr G. D. Cognition and the basal ganglia: a possible substrate for procedural knowledge. Can J Neurol Sci. 1987 Aug;14(3 Suppl):381–385. doi: 10.1017/s031716710003777x. [DOI] [PubMed] [Google Scholar]
- Pollitt E., Hathirat P., Kotchabhakdi N. J., Missell L., Valyasevi A. Iron deficiency and educational achievement in Thailand. Am J Clin Nutr. 1989 Sep;50(3 Suppl):687–697. doi: 10.1093/ajcn/50.3.687. [DOI] [PubMed] [Google Scholar]
- Refino C. J., Dallman P. R. Rate of repair of iron deficiency anemia and blood loss anemia in young and mature rats. Am J Clin Nutr. 1983 Jun;37(6):904–909. doi: 10.1093/ajcn/37.6.904. [DOI] [PubMed] [Google Scholar]
- Ruiz S., Walter T., Perez H., Stekel A., Hernandez A., Soto-Moyano R. Effect of early iron deficiency on reactivity of the rat parietal association cortex. Int J Neurosci. 1984 Jun;23(3):161–167. doi: 10.3109/00207458408985359. [DOI] [PubMed] [Google Scholar]
- Soemantri A. G., Pollitt E., Kim I. Iron deficiency anemia and educational achievement. Am J Clin Nutr. 1985 Dec;42(6):1221–1228. doi: 10.1093/ajcn/42.6.1221. [DOI] [PubMed] [Google Scholar]
- Tamir H., Klein A., Rapport M. M. Serotonin binding protein:enhancement of binding by Fe2+ and inhibition of binding by drugs. J Neurochem. 1976 May;26(5):871–878. doi: 10.1111/j.1471-4159.1976.tb06467.x. [DOI] [PubMed] [Google Scholar]
- Taneja V., Mishra K., Agarwal K. N. Effect of early iron deficiency in rat on the gamma-aminobutyric acid shunt in brain. J Neurochem. 1986 Jun;46(6):1670–1674. doi: 10.1111/j.1471-4159.1986.tb08483.x. [DOI] [PubMed] [Google Scholar]
- Walter T., De Andraca I., Chadud P., Perales C. G. Iron deficiency anemia: adverse effects on infant psychomotor development. Pediatrics. 1989 Jul;84(1):7–17. [PubMed] [Google Scholar]
- Walter T., Kovalskys J., Stekel A. Effect of mild iron deficiency on infant mental development scores. J Pediatr. 1983 Apr;102(4):519–522. doi: 10.1016/s0022-3476(83)80177-2. [DOI] [PubMed] [Google Scholar]
- Weinberg J., Dallman P. R., Levine S. Iron deficiency during early development in the rat: behavioral and physiological consequences. Pharmacol Biochem Behav. 1980 Apr;12(4):493–502. doi: 10.1016/0091-3057(80)90179-3. [DOI] [PubMed] [Google Scholar]
- Weinberg J., Levine S., Dallman P. R. Long-term consequences of early iron deficiency in the rat. Pharmacol Biochem Behav. 1979 Dec;11(6):631–638. doi: 10.1016/0091-3057(79)90254-5. [DOI] [PubMed] [Google Scholar]
- Wolf A. W., Lozoff B. A clinically interpretable method for analyzing the Bayley Infant Behavior Record. J Pediatr Psychol. 1985 Jun;10(2):199–214. doi: 10.1093/jpepsy/10.2.199. [DOI] [PubMed] [Google Scholar]
- Yehuda S., Youdim M. E., Mostofsky D. I. Brain iron-deficiency causes reduced learning capacity in rats. Pharmacol Biochem Behav. 1986 Jul;25(1):141–144. doi: 10.1016/0091-3057(86)90244-3. [DOI] [PubMed] [Google Scholar]
- Youdim M. B., Green A. R., Bloomfield M. R., Mitchell B. D., Heal D. J., Grahame-Smith D. G. The effects of iron deficiency on brain biogenic monoamine biochemistry and function in rats. Neuropharmacology. 1980 Mar;19(3):259–267. doi: 10.1016/0028-3908(80)90148-3. [DOI] [PubMed] [Google Scholar]
- Youdim M. B., Sills M. A., Heydorn W. E., Creed G. J., Jacobowitz D. M. Iron deficiency alters discrete proteins in rat caudate nucleus and nucleus accumbens. J Neurochem. 1986 Sep;47(3):794–799. doi: 10.1111/j.1471-4159.1986.tb00681.x. [DOI] [PubMed] [Google Scholar]
