Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Nov 7;270(Suppl 2):S220–S222. doi: 10.1098/rsbl.2003.0069

Immune response is energetically costly in white cabbage butterfly pupae.

Dalial Freitak 1, Indrek Ots 1, Alo Vanatoa 1, Peeter Hõrak 1
PMCID: PMC1809938  PMID: 14667388

Abstract

Parasite-driven coevolution has led hosts to develop a complicated and potentially costly defence machinery, consisting mainly of the immune system. Despite the evidence for the trade-offs between immune function and life-history traits, it is still obscure how the costs of using and maintaining the immune function are paid. We tested whether immune challenge is energetically costly for white cabbage butterfly (Pieris brassicae L.) diapausing pupa. Individuals challenged with nylon implant raised their standard metabolic rate nearly 8% compared to the controls. Hence, costs of activation of immune system in insect pupa can be expressed in energetic currency.

Full Text

The Full Text of this article is available as a PDF (72.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barillas-Mury C., Wizel B., Han Y. S. Mosquito immune responses and malaria transmission: lessons from insect model systems and implications for vertebrate innate immunity and vaccine development. Insect Biochem Mol Biol. 2000 Jun;30(6):429–442. doi: 10.1016/s0965-1748(00)00018-7. [DOI] [PubMed] [Google Scholar]
  2. Beckage N. E., Gelman D. B., Chappell M. A., Alleyne M. Effects of Parasitism by the Braconid Wasp Cotesia congregata on Metabolic Rate in Host Larvae of the Tobacco Hornworm, Manduca sexta. J Insect Physiol. 1997 Feb 21;43(2):143–154. doi: 10.1016/s0022-1910(96)00090-x. [DOI] [PubMed] [Google Scholar]
  3. Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):329–344. doi: 10.1016/s0145-305x(99)00015-4. [DOI] [PubMed] [Google Scholar]
  4. Demas G. E., Chefer V., Talan M. I., Nelson R. J. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am J Physiol. 1997 Nov;273(5 Pt 2):R1631–R1637. doi: 10.1152/ajpregu.1997.273.5.R1631. [DOI] [PubMed] [Google Scholar]
  5. Han Y. S., Chun J., Schwartz A., Nelson S., Paskewitz S. M. Induction of mosquito hemolymph proteins in response to immune challenge and wounding. Dev Comp Immunol. 1999 Oct-Dec;23(7-8):553–562. doi: 10.1016/s0145-305x(99)00047-6. [DOI] [PubMed] [Google Scholar]
  6. Lowenberger C. Innate immune response of Aedes aegypti. Insect Biochem Mol Biol. 2001 Mar 1;31(3):219–229. doi: 10.1016/s0965-1748(00)00141-7. [DOI] [PubMed] [Google Scholar]
  7. Martin Lynn B., 2nd, Scheuerlein Alex, Wikelski Martin. Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc Biol Sci. 2003 Jan 22;270(1511):153–158. doi: 10.1098/rspb.2002.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Moret Y., Schmid-Hempel P. Survival for immunity: the price of immune system activation for bumblebee workers. Science. 2000 Nov 10;290(5494):1166–1168. doi: 10.1126/science.290.5494.1166. [DOI] [PubMed] [Google Scholar]
  9. Nappi A. J., Vass E., Frey F., Carton Y. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur J Cell Biol. 1995 Dec;68(4):450–456. [PubMed] [Google Scholar]
  10. Ots I., Kerimov A. B., Ivankina E. V., Ilyina T. A., Hõrak P. Immune challenge affects basal metabolic activity in wintering great tits. Proc Biol Sci. 2001 Jun 7;268(1472):1175–1181. doi: 10.1098/rspb.2001.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prévost G., Eslin P. Hemocyte load and immune resistance to Asobara tabida are correlated in species of the Drosophila melanogaster subgroup. J Insect Physiol. 1998 Sep;44(9):807–816. doi: 10.1016/s0022-1910(98)00013-4. [DOI] [PubMed] [Google Scholar]
  12. Russo J, Brehélin M, Carton Y. Haemocyte changes in resistant and susceptible strains of D. melanogaster caused by virulent and avirulent strains of the parasitic wasp Leptopilina boulardi. J Insect Physiol. 2001 Feb 1;47(2):167–172. doi: 10.1016/s0022-1910(00)00102-5. [DOI] [PubMed] [Google Scholar]
  13. Råberg L., Grahn M., Hasselquist D., Svensson E. On the adaptive significance of stress-induced immunosuppression. Proc Biol Sci. 1998 Sep 7;265(1406):1637–1641. doi: 10.1098/rspb.1998.0482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schmid-Hempel Paul. Variation in immune defence as a question of evolutionary ecology. Proc Biol Sci. 2003 Feb 22;270(1513):357–366. doi: 10.1098/rspb.2002.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shelby K. S., Adeyeye O. A., Okot-Kotber B. M., Webb B. A. Parasitism-linked block of host plasma melanization. J Invertebr Pathol. 2000 Apr;75(3):218–225. doi: 10.1006/jipa.2000.4925. [DOI] [PubMed] [Google Scholar]
  16. Strand M. R., Pech L. L. Immunological basis for compatibility in parasitoid-host relationships. Annu Rev Entomol. 1995;40:31–56. doi: 10.1146/annurev.en.40.010195.000335. [DOI] [PubMed] [Google Scholar]
  17. Vilmos P., Kurucz E. Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol Lett. 1998 Jun;62(2):59–66. doi: 10.1016/s0165-2478(98)00023-6. [DOI] [PubMed] [Google Scholar]
  18. von Schantz T., Bensch S., Grahn M., Hasselquist D., Wittzell H. Good genes, oxidative stress and condition-dependent sexual signals. Proc Biol Sci. 1999 Jan 7;266(1414):1–12. doi: 10.1098/rspb.1999.0597. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES