Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 May 7;271(Suppl 4):S222–S225. doi: 10.1098/rsbl.2003.0143

Constraints on muscular performance: trade-offs between power output and fatigue resistance.

Robbie S Wilson 1, Rob S James 1
PMCID: PMC1810012  PMID: 15252990

Abstract

An important functional and evolutionary constraint on the physical performance of vertebrates is believed to be the trade-off between speed and endurance capacity. However, despite the pervasiveness of physiological arguments, most studies have found no evidence of the trade-off when tested at the whole-animal level. We investigated the existence of this trade-off at the whole-muscle level, the presumed site of this physiological conflict, by examining inter-individual variation in both maximum power output and fatigue resistance for mouse extensor digitorum longus (EDL) muscle using the work-loop technique. We found negative correlations between several measures of in vitro maximum power output and force production with fatigue resistance for individual mouse EDL muscles, indicating functional trade-offs between these performance parameters. We suggest that this trade-off detected at the whole-muscle level has imposed an important constraint on the evolution of vertebrate physical performance.

Full Text

The Full Text of this article is available as a PDF (122.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley-Ross M. A., Barker J. U. The effect of fiber-type heterogeneity on optimized work and power output of hindlimb muscles of the salamander Ambystoma tigrinum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Aug 24;188(8):611–620. doi: 10.1007/s00359-002-0336-4. [DOI] [PubMed] [Google Scholar]
  2. Askew G. N., Marsh R. L. Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation. J Exp Biol. 1998 May;201(Pt 10):1527–1540. doi: 10.1242/jeb.201.10.1527. [DOI] [PubMed] [Google Scholar]
  3. Askew G. N., Young I. S., Altringham J. D. Fatigue of mouse soleus muscle, using the work loop technique. J Exp Biol. 1997 Nov;200(Pt 22):2907–2912. doi: 10.1242/jeb.200.22.2907. [DOI] [PubMed] [Google Scholar]
  4. Bonine K. E., Gleeson T. T., Garland T., Jr Comparative analysis of fiber-type composition in the iliofibularis muscle of phrynosomatid lizards (Squamata). J Morphol. 2001 Dec;250(3):265–280. doi: 10.1002/jmor.1069. [DOI] [PubMed] [Google Scholar]
  5. Bottinelli R., Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol. 2000;73(2-4):195–262. doi: 10.1016/s0079-6107(00)00006-7. [DOI] [PubMed] [Google Scholar]
  6. Garland T., Jr, Carter P. A. Evolutionary physiology. Annu Rev Physiol. 1994;56:579–621. doi: 10.1146/annurev.ph.56.030194.003051. [DOI] [PubMed] [Google Scholar]
  7. Garland T., Jr, Else P. L. Seasonal, sexual, and individual variation in endurance and activity metabolism in lizards. Am J Physiol. 1987 Mar;252(3 Pt 2):R439–R449. doi: 10.1152/ajpregu.1987.252.3.R439. [DOI] [PubMed] [Google Scholar]
  8. Goldspink G. Muscle growth and muscle function: a molecular biological perspective. Res Vet Sci. 1996 May;60(3):193–204. doi: 10.1016/s0034-5288(96)90038-7. [DOI] [PubMed] [Google Scholar]
  9. James R. S., Altringham J. D., Goldspink D. F. The mechanical properties of fast and slow skeletal muscles of the mouse in relation to their locomotory function. J Exp Biol. 1995 Feb;198(Pt 2):491–502. doi: 10.1242/jeb.198.2.491. [DOI] [PubMed] [Google Scholar]
  10. Josephson R. K. Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol. 1993;55:527–546. doi: 10.1146/annurev.ph.55.030193.002523. [DOI] [PubMed] [Google Scholar]
  11. Marsh R. L. How muscles deal with real-world loads: the influence of length trajectory on muscle performance. J Exp Biol. 1999 Dec;202(Pt 23):3377–3385. doi: 10.1242/jeb.202.23.3377. [DOI] [PubMed] [Google Scholar]
  12. Stevens E. D., Syme D. A. Effect of stimulus duty cycle and cycle frequency on power output during fatigue in rat diaphragm muscle doing oscillatory work. Can J Physiol Pharmacol. 1993 Dec;71(12):910–916. doi: 10.1139/y93-138. [DOI] [PubMed] [Google Scholar]
  13. Van Damme Raoul, Wilson Robbie S., Vanhooydonck Bieke, Aerts Peter. Performance constraints in decathletes. Nature. 2002 Feb 14;415(6873):755–756. doi: 10.1038/415755b. [DOI] [PubMed] [Google Scholar]
  14. Vanhooydonck B., Van Damme R., Aerts P. Speed and stamina trade-off in lacertid lizards. Evolution. 2001 May;55(5):1040–1048. doi: 10.1554/0014-3820(2001)055[1040:sastoi]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  15. Wilson Robbie S., James Rob S., Van Damme Raoul. Trade-offs between speed and endurance in the frog Xenopus laevis: a multi-level approach. J Exp Biol. 2002 Apr;205(Pt 8):1145–1152. doi: 10.1242/jeb.205.8.1145. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES