Abstract
Understanding how the human visual system recognizes objects is one of the key challenges in neuroscience. Inspired by a large body of physiological evidence, a general class of recognition models has emerged, which is based on a hierarchical organization of visual processing, with succeeding stages being sensitive to image features of increasing complexity. However, these models appear to be incompatible with some well-known psychophysical results. Prominent among these are experiments investigating recognition impairments caused by vertical inversion of images, especially those of faces. It has been reported that faces that differ 'featurally' are much easier to distinguish when inverted than those that differ 'configurally'; a finding that is difficult to reconcile with the physiological models. Here, we show that after controlling for subjects' expectations, there is no difference between 'featurally' and 'configurally' transformed faces in terms of inversion effect. This result reinforces the plausibility of simple hierarchical models of object representation and recognition in the cortex.
Full Text
The Full Text of this article is available as a PDF (139.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Diamond R., Carey S. Why faces are and are not special: an effect of expertise. J Exp Psychol Gen. 1986 Jun;115(2):107–117. doi: 10.1037//0096-3445.115.2.107. [DOI] [PubMed] [Google Scholar]
- Farah M. J., Tanaka J. W., Drain H. M. What causes the face inversion effect? J Exp Psychol Hum Percept Perform. 1995 Jun;21(3):628–634. doi: 10.1037//0096-1523.21.3.628. [DOI] [PubMed] [Google Scholar]
- Felleman D. J., Van Essen D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991 Jan-Feb;1(1):1–47. doi: 10.1093/cercor/1.1.1-a. [DOI] [PubMed] [Google Scholar]
- Freire A., Lee K., Symons L. A. The face-inversion effect as a deficit in the encoding of configural information: direct evidence. Perception. 2000;29(2):159–170. doi: 10.1068/p3012. [DOI] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Grand R., Mondloch C. J., Maurer D., Brent H. P. Neuroperception. Early visual experience and face processing. Nature. 2001 Apr 19;410(6831):890–890. doi: 10.1038/35073749. [DOI] [PubMed] [Google Scholar]
- Livingstone M., Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988 May 6;240(4853):740–749. doi: 10.1126/science.3283936. [DOI] [PubMed] [Google Scholar]
- Logothetis N. K., Sheinberg D. L. Visual object recognition. Annu Rev Neurosci. 1996;19:577–621. doi: 10.1146/annurev.ne.19.030196.003045. [DOI] [PubMed] [Google Scholar]
- Mondloch Catherine J., Le Grand Richard, Maurer Daphne. Configural face processing develops more slowly than featural face processing. Perception. 2002;31(5):553–566. doi: 10.1068/p3339. [DOI] [PubMed] [Google Scholar]
- Riesenhuber M., Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999 Nov;2(11):1019–1025. doi: 10.1038/14819. [DOI] [PubMed] [Google Scholar]
- Sekuler Allison B., Gaspar Carl M., Gold Jason M., Bennett Patrick J. Inversion leads to quantitative, not qualitative, changes in face processing. Curr Biol. 2004 Mar 9;14(5):391–396. doi: 10.1016/j.cub.2004.02.028. [DOI] [PubMed] [Google Scholar]
- Tanaka J. W., Farah M. J. Parts and wholes in face recognition. Q J Exp Psychol A. 1993 May;46(2):225–245. doi: 10.1080/14640749308401045. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Saito H., Fukada Y., Moriya M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol. 1991 Jul;66(1):170–189. doi: 10.1152/jn.1991.66.1.170. [DOI] [PubMed] [Google Scholar]
- Tanaka Keiji. Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb Cortex. 2003 Jan;13(1):90–99. doi: 10.1093/cercor/13.1.90. [DOI] [PubMed] [Google Scholar]
- Ts'o D. Y., Roe A. W., Gilbert C. D. A hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vision Res. 2001;41(10-11):1333–1349. doi: 10.1016/s0042-6989(01)00076-1. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.