Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Dec 7;271(Suppl 6):S436–S439. doi: 10.1098/rsbl.2004.0209

Biogenic magnetite in the nematode caenorhabditis elegans.

Charles G Cranfield 1, Adam Dawe 1, Vassil Karloukovski 1, Rafal E Dunin-Borkowski 1, David de Pomerai 1, Jon Dobson 1
PMCID: PMC1810097  PMID: 15801597

Abstract

The nematode Caenorhabditis elegans is widely used as a model system in biological research. Recently, examination of the production of heat-shock proteins in this organism in response to mobile phone-type electromagnetic field exposure produced the most robust demonstration to date of a non-thermal, deleterious biological effect. Though these results appear to be a sound demonstration of non-thermal bioeffects, to our knowledge, no mechanism has been proposed to explain them. We show, apparently for the first time, that biogenic magnetite, a ferrimagnetic iron oxide, is present in C. elegans. Its presence may have confounding effects on experiments involving electromagnetic fields as well as implications for the use of this nematode as a model system for iron biomineralization in multi-cellular organisms.

Full Text

The Full Text of this article is available as a PDF (397.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cranfield Charles G., Wieser Heinz Gregor, Dobson Jon. Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality. IEEE Trans Nanobioscience. 2003 Sep;2(3):146–149. doi: 10.1109/tnb.2003.816227. [DOI] [PubMed] [Google Scholar]
  2. Cranfield Charles, Wieser Heinz Gregor, Al Madan Jaffar, Dobson Jon. Preliminary evaluation of nanoscale biogenic magnetite-based ferromagnetic transduction mechanisms for mobile phone bioeffects. IEEE Trans Nanobioscience. 2003 Mar;2(1):40–43. doi: 10.1109/tnb.2003.810155. [DOI] [PubMed] [Google Scholar]
  3. Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett. 2001 May 4;496(1):1–5. doi: 10.1016/s0014-5793(01)02386-9. [DOI] [PubMed] [Google Scholar]
  4. Dobson J., St Pierre T. Application of the ferromagnetic transduction model to D.C. and pulsed magnetic fields: effects on epileptogenic tissue and implications for cellular phone safety. Biochem Biophys Res Commun. 1996 Oct 23;227(3):718–723. doi: 10.1006/bbrc.1996.1575. [DOI] [PubMed] [Google Scholar]
  5. Dobson Jon. Magnetic iron compounds in neurological disorders. Ann N Y Acad Sci. 2004 Mar;1012:183–192. doi: 10.1196/annals.1306.016. [DOI] [PubMed] [Google Scholar]
  6. Frankel R. B. Magnetic guidance of organisms. Annu Rev Biophys Bioeng. 1984;13:85–103. doi: 10.1146/annurev.bb.13.060184.000505. [DOI] [PubMed] [Google Scholar]
  7. Hautot D., Pankhurst Q. A., Khan N., Dobson J. Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer's disease brain tissue. Proc Biol Sci. 2003 Aug 7;270 (Suppl 1):S62–S64. doi: 10.1098/rsbl.2003.0012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Junkersdorf B., Bauer H., Gutzeit H. O. Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans. Bioelectromagnetics. 2000 Feb;21(2):100–106. doi: 10.1002/(sici)1521-186x(200002)21:2<100::aid-bem4>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  9. Kirschvink J. L., Kobayashi-Kirschvink A., Woodford B. J. Magnetite biomineralization in the human brain. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7683–7687. doi: 10.1073/pnas.89.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kirschvink J. L. Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics. 1996;17(3):187–194. doi: 10.1002/(SICI)1521-186X(1996)17:3<187::AID-BEM4>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  11. Kobayashi A. K., Kirschvink J. L., Nesson M. H. Ferromagnetism and EMFs. Nature. 1995 Mar 9;374(6518):123–123. doi: 10.1038/374123a0. [DOI] [PubMed] [Google Scholar]
  12. Link Christopher D., Taft Andrew, Kapulkin Vadim, Duke Kyle, Kim Stuart, Fei Qing, Wood Douglas E., Sahagan Barbara G. Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer's disease model. Neurobiol Aging. 2003 May-Jun;24(3):397–413. doi: 10.1016/s0197-4580(02)00224-5. [DOI] [PubMed] [Google Scholar]
  13. Miyakawa T., Yamada S., Harada S., Ishimori T., Yamamoto H., Hosono R. Exposure of Caenorhabditis elegans to extremely low frequency high magnetic fields induces stress responses. Bioelectromagnetics. 2001 Jul;22(5):333–339. doi: 10.1002/bem.58. [DOI] [PubMed] [Google Scholar]
  14. Pósfai M., Buseck P. R., Bazylinski D. A., Frankel R. B. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science. 1998 May 8;280(5365):880–883. doi: 10.1126/science.280.5365.880. [DOI] [PubMed] [Google Scholar]
  15. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  16. Taylor A. P., Barry J. C., Webb R. I. Structural and morphological anomalies in magnetosomes: possible biogenic origin for magnetite in ALH84001. J Microsc. 2001 Jan;201(Pt 1):84–106. doi: 10.1046/j.1365-2818.2001.00760.x. [DOI] [PubMed] [Google Scholar]
  17. Wiltschko Wolfgang, Wiltschko Roswitha. Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften. 2002 Sep 13;89(10):445–452. doi: 10.1007/s00114-002-0356-5. [DOI] [PubMed] [Google Scholar]
  18. de Pomerai D., Daniells C., David H., Allan J., Duce I., Mutwakil M., Thomas D., Sewell P., Tattersall J., Jones D. Non-thermal heat-shock response to microwaves. Nature. 2000 May 25;405(6785):417–418. doi: 10.1038/35013144. [DOI] [PubMed] [Google Scholar]
  19. de Pomerai David I., Smith Brette, Dawe Adam, North Kate, Smith Tim, Archer David B., Duce Ian R., Jones Donald, Candido E. Peter M. Microwave radiation can alter protein conformation without bulk heating. FEBS Lett. 2003 May 22;543(1-3):93–97. doi: 10.1016/s0014-5793(03)00413-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES