Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1981 Oct;20(4):443–454. doi: 10.1128/aac.20.4.443

Mode of action of pamamycin in Staphylococcus aureus.

W G Chou, B M Pogell
PMCID: PMC181722  PMID: 6177281

Abstract

Pamamycin was previously identified as a stimulator of aerial mycelium formation in Streptomyces alboniger and as a new antibiotic. Studies in Staphylococcus aureus grown in brain heart infusion broth showed that this antibiotic was bacteriostatic at 0.1 to 0.3 U/ml and bactericidal at 0.5 U/ml or higher. At concentrations which inhibited growth ca. 40%, pamamycin inhibited the uptake of nucleosides and Pi, as well as purine and pyrimidine bases, and the incorporation of these precursors into nucleic acids. Under the same conditions, the antibiotic had no effect on protein and cell wall synthesis, glucose utilization, or the uptake of amino acids, 2-deoxyglucose, or Mn2+. Further studies suggested that the primary action of pamamycin was on transport processes rather than de novo ribonucleic acid and deoxyribonucleic acid synthesis. Direct in vitro studies of nucleoside transport with isolated membrane vesicles confirmed this conclusion. Pamamycin bound tightly to bacterial membranes and induced significant release of ultraviolet-absorbing material at bactericidal concentrations. It was concluded that the mechanism of growth inhibition involves alteration of membrane-associated cellular functions. Inhibition of Pi transport is a likely primary target for this effect.

Full text

PDF
443

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRODIE A. F., GRAY C. T. Phosphorylation coupled to oxidation in bacterial extracts. J Biol Chem. 1956 Apr;219(2):853–862. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  4. GALLANT J., SUSKIND S. R. Ribonucleic acid synthesis and thymineless death. Biochim Biophys Acta. 1962 May 14;55:627–638. doi: 10.1016/0006-3002(62)90841-7. [DOI] [PubMed] [Google Scholar]
  5. Gallant J., Cashel M. On the mechanism of amino acid control of ribonucleic acid biosynthesis. J Mol Biol. 1967 May 14;25(3):545–553. doi: 10.1016/0022-2836(67)90205-7. [DOI] [PubMed] [Google Scholar]
  6. Hamilton L. D. The purification of the DNA polymerase from Micrococcus luteus. Methods Enzymol. 1974;29:38–45. doi: 10.1016/0076-6879(74)29007-4. [DOI] [PubMed] [Google Scholar]
  7. KLOOS W. E., PATTEE P. A. A BIOCHEMICAL CHARACTERIZATION OF HISTIDINE-DEPENDENT MUTANTS OF STAPHYLOCOCCUS AUREUS. J Gen Microbiol. 1965 May;39:185–194. doi: 10.1099/00221287-39-2-185. [DOI] [PubMed] [Google Scholar]
  8. Kalakoutskii L. V., Agre N. S. Comparative aspects of development and differentiation in actinomycetes. Bacteriol Rev. 1976 Jun;40(2):469–524. doi: 10.1128/br.40.2.469-524.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Khokhlov A. S., Anisova L. N., Tovarova I. I., Kleiner E. M., Kovalenko I. V., Krasilnikova O. I., Kornitskaya E. Y., Pliner S. A. Effect of A-factor on the growth of asporogenous mutants of Streptomyces griseus, not producing this factor. Z Allg Mikrobiol. 1973;13(8):647–655. doi: 10.1002/jobm.3630130803. [DOI] [PubMed] [Google Scholar]
  10. Kirby R., Wright L. F., Hopwood D. A. Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature. 1975 Mar 20;254(5497):265–267. doi: 10.1038/254265a0. [DOI] [PubMed] [Google Scholar]
  11. Komatsu Y. Adenosine uptake by isolated membrane vesicles from Escherichia coli K-12. Biochim Biophys Acta. 1973 Dec 13;330(2):206–221. doi: 10.1016/0005-2736(73)90226-5. [DOI] [PubMed] [Google Scholar]
  12. Komatsu Y., Tanaka K. Deoxycytidine uptake by isolated membrane vesicles from Escherichia coli K 12. Biochim Biophys Acta. 1973 Jul 18;311(4):496–506. doi: 10.1016/0005-2736(73)90125-9. [DOI] [PubMed] [Google Scholar]
  13. Konings W. N., Barnes E. M., Jr, Kaback H. R. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. J Biol Chem. 1971 Oct 10;246(19):5857–5861. [PubMed] [Google Scholar]
  14. Konings W. N., Rosenberg H. Phosphate transport in membrane vesicles from Escherichia coli. Biochim Biophys Acta. 1978 Apr 4;508(2):370–378. doi: 10.1016/0005-2736(78)90339-5. [DOI] [PubMed] [Google Scholar]
  15. McCann P. A., Pogell B. M. Pamamycin: a new antibiotic and stimulator of aerial mycelia formation. J Antibiot (Tokyo) 1979 Jul;32(7):673–678. doi: 10.7164/antibiotics.32.673. [DOI] [PubMed] [Google Scholar]
  16. Moses R. E., Richardson C. C. Replication and repair of DNA in cells of Escherichia coli treated with toluene. Proc Natl Acad Sci U S A. 1970 Oct;67(2):674–681. doi: 10.1073/pnas.67.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Munch-Petersen A., Mygind B., Nicolaisen A., Pihl N. J. Nucleoside transport in cells and membrane vesicles from Escherichia coli K12. J Biol Chem. 1979 May 25;254(10):3730–3737. [PubMed] [Google Scholar]
  18. Normark S., Boman H. G., Matsson E. Mutant of Escherichia coli with anomalous cell division and ability to decrease episomally and chromosomally mediated resistance to ampicillin and several other antibiotics. J Bacteriol. 1969 Mar;97(3):1334–1342. doi: 10.1128/jb.97.3.1334-1342.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rader R. L., Hochstadt J. Regulation of purine utilization in bacteria. VII. Involvement of membrane-associated nucleoside phosphorylase in the uptake and the base-mediated loss of the ribose moiety of nucleosides by Salmonella typhimurium membrane vesicles. J Bacteriol. 1976 Oct;128(1):290–301. doi: 10.1128/jb.128.1.290-301.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Redshaw P. A., McCann P. A., Pentella M. A., Pogell B. M. Simultaneous loss of multiple differentiated functions in aerial mycelium-negative isolates of streptomycetes. J Bacteriol. 1979 Feb;137(2):891–899. doi: 10.1128/jb.137.2.891-899.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scudamore R. A., Beveridge T. J., Goldner M. Outer-membrane penetration barriers as components of intrinsic resistance to beta-lactam and other antibiotics in Escherichia coli K-12. Antimicrob Agents Chemother. 1979 Feb;15(2):182–189. doi: 10.1128/aac.15.2.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sprague G. F., Jr, Bell R. M., Cronan J. E., Jr A mutant of Escherichia coli auxotrophic for organic phosphates: evidence for two defects in inorganic phosphate transport. Mol Gen Genet. 1975 Dec 30;143(1):71–77. doi: 10.1007/BF00269422. [DOI] [PubMed] [Google Scholar]
  23. Szabó G., Békési I., Vitális S. Mode of action of Factor C, a substance of regulatory function in cyto-differentiation. Biochim Biophys Acta. 1967 Aug 22;145(1):159–165. doi: 10.1016/0005-2787(67)90665-x. [DOI] [PubMed] [Google Scholar]
  24. Szeszák F., Szabó G. Alteration of RNA synthesis in vitro with an endogenous regulating factor of cytodifferentiation of Streptomyces griseus. Acta Biol Acad Sci Hung. 1973;24(1):11–17. [PubMed] [Google Scholar]
  25. Vitális S., Szabó G. Cytomorphological effect of factor C in submerged cultures on the hyphae of Streptomyces griseus strain no. 52-1. Acta Biol Acad Sci Hung. 1969;20(1):85–92. [PubMed] [Google Scholar]
  26. WEBER M. M., HOLLOCHER T. C., ROSSO G. THE APPEARANCE AND GENERAL PROPERTIES OF FREE RADICALS IN ELECTRON TRANSPORT PARTICLES FROM MYCOBACTERIUM PHLEI. J Biol Chem. 1965 Apr;240:1776–1782. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES