Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1981 Nov;20(5):653–659. doi: 10.1128/aac.20.5.653

Inhibition of cellular and virus-associated nucleotide polymerases by, and anti-herpes simplex virus activity of, streptovaricin derivatives.

B I Srivastava, R A DiCioccio, K C Chadha, K L Rinehart Jr
PMCID: PMC181768  PMID: 6119956

Abstract

Fourteen streptovaricin derivatives were tested for inhibition of cellular nucleotide polymerases (deoxyribonucleic acid polymerases alpha, beta, and gamma, terminal deoxynucleotidyltransferase [TdT], and ribonucleic acid polymerase II), simian sarcoma virus deoxyribonucleic acid polymerase, and herpes simplex virus type 1-induced deoxyribonucleic acid polymerase (HSV-DP). Three compounds (strep-tovadienal C, prestreptovarone, and streptoval Fc) preferentially inhibited TdT and HSV-DP over the other enzymes. These compounds inhibited HSV-DP more potently than they inhibited TdT. Evidence indicated that the mode of inhibition of TdT and HSV-DP by streptovadienal C and prestreptovarone was by interaction with the enzymes and not with template-primer, initiator, substrates, or divalent cations required for enzyme activity. Furthermore, data suggested that these compounds bind with greater affinity to HSV-DP than to TdT. Streptovadienal C and prestreptovarone were examined for their effect on the replication of herpes simplex virus type 1 in African green monkey kidney (CV1) cells. These compounds produced 2- and 3-log drops in virus titer, respectively, at concentrations not significantly affecting cell viability. This correlated with evidence indicating a greater binding affinity of these compounds for HSV-DP over cellular nucleotide polymerases.

Full text

PDF
653

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERMANN W. W., POTTER V. R. Enzyme inhibition in relation to chemotherapy. Proc Soc Exp Biol Med. 1949 Oct;72(1):1–9. doi: 10.3181/00379727-72-17313. [DOI] [PubMed] [Google Scholar]
  2. Aron G. M., Purifoy D. J., Schaffer P. A. DNA synthesis and DNA polymerase activity of herpes simplex virus type 1 temperature-sensitive mutants. J Virol. 1975 Sep;16(3):498–507. doi: 10.1128/jvi.16.3.498-507.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolden A., Aucker J., Weissbach A. Synthesis of herpes simplex virus, vaccinia virus, and adenovirus DNA in isolated HeLa cell nuclei. I. Effect of viral-specific antisera and phosphonoacetic acid. J Virol. 1975 Dec;16(6):1584–1592. doi: 10.1128/jvi.16.6.1584-1592.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cha S. Tight-binding inhibitors-I. Kinetic behavior. Biochem Pharmacol. 1975 Dec 1;24(23):2177–2185. doi: 10.1016/0006-2952(75)90050-7. [DOI] [PubMed] [Google Scholar]
  5. Chadha K. C., Munyon W. H., Hughes R. G., Jr Thymidine kinaseless revertants of Ltk- cells transformed by herpes simplex virus type 1 are resistant to retransformation by homologous virus. Infect Immun. 1977 May;16(2):655–661. doi: 10.1128/iai.16.2.655-661.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang L. M. Development of terminal deoxynucleotidyl transferase activity in embryonic calf thymus gland. Biochem Biophys Res Commun. 1971 Jul 2;44(1):124–131. doi: 10.1016/s0006-291x(71)80167-5. [DOI] [PubMed] [Google Scholar]
  7. Coleman M. S., Greenwood M. F., Hutton J. J., Bollum F. J., Lampkin B., Holland P. Serial observations on terminal deoxynucleotidyl transferase activity and lymphoblast surface markers in acute lymphoblastic leukemia. Cancer Res. 1976 Jan;36(1):120–127. [PubMed] [Google Scholar]
  8. DiCioccio R. A., Srivastava B. I., Rinehart K. L., Jr, Lee V. J., Branfman A. R., Li L. H. Structure-activity relationship, selectivity and mode of inhibition of terminal deoxyribonucleotidyltransferase by streptolydigin analogs. Biochem Pharmacol. 1980 Jul 15;29(14):2001–2008. doi: 10.1016/0006-2952(80)90484-0. [DOI] [PubMed] [Google Scholar]
  9. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  10. Hay R. T., Hay J. Synthesis of herpes simplex virus DNA in preparations of chromatin from infected cell nuclei. J Gen Virol. 1978 Nov;41(2):427–431. doi: 10.1099/0022-1317-41-2-427. [DOI] [PubMed] [Google Scholar]
  11. Keir H. M., Subak-Sharpe H., Shedden W. I., Watson D. H., Wildy P. Immunological evidence for a specific DNA polymerase produced after infection by herpes simplex virus. Virology. 1966 Sep;30(1):154–157. doi: 10.1016/s0042-6822(66)81022-x. [DOI] [PubMed] [Google Scholar]
  12. Li L. H., Clark T. D., Cowie C. H., Swenberg J. A., Renis H. E., Rinehart K. L., Jr Effects of streptovaricins and their degradation products on infectivity of Rauscher leukemia virus. J Natl Cancer Inst. 1977 Feb;58(2):245–249. doi: 10.1093/jnci/58.2.245. [DOI] [PubMed] [Google Scholar]
  13. Li L. H., Cowie C. H., Gray L. G., Moran D. M., Clark T. D., Rinehart K. L., Jr Effects of streptovaricins and their degradation products on RNA-directed DNA polymerase of Rauscher leukemia virus. J Natl Cancer Inst. 1977 Feb;58(2):239–243. doi: 10.1093/jnci/58.2.239. [DOI] [PubMed] [Google Scholar]
  14. McCaffrey R., Smoler D. F., Baltimore D. Terminal deoxynucleotidyl transferase in a case of childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1973 Feb;70(2):521–525. doi: 10.1073/pnas.70.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Minowada J., Janossy G., Greaves M. F., Tsubota T., Srivastava B. I., Morikawa S., Tatsumi E. Expression of an antigen associated with acute lymphoblastic leukemia in human leukemia-lymphoma cell lines. J Natl Cancer Inst. 1978 Jun;60(6):1269–1277. doi: 10.1093/jnci/60.6.1269. [DOI] [PubMed] [Google Scholar]
  16. Müller W. E., Zahn R. K., Falke D. Variation of DNA polymerase and RNA polymerase activities in cells infected with herpes simplex virus type 1. Virology. 1978 Feb;84(2):320–330. doi: 10.1016/0042-6822(78)90251-9. [DOI] [PubMed] [Google Scholar]
  17. Rinehart K. L., Jr, Shield L. S. Chemistry of the ansamycin antibiotics. Fortschr Chem Org Naturst. 1976;33:231–307. doi: 10.1007/978-3-7091-3262-3_3. [DOI] [PubMed] [Google Scholar]
  18. Sahai Srivastava B. I., Khan S. A., Henderson E. S. High terminal deoxynucleotidyl transferase activity in acute myelogenous leukemia. Cancer Res. 1976 Oct;36(10):3847–3850. [PubMed] [Google Scholar]
  19. Sahai Srivastava B. I. Terminal deoxynucleotidyl transferase and human leukemia. Res Commun Chem Pathol Pharmacol. 1975 Apr;10(4):715–724. [PubMed] [Google Scholar]
  20. Sarin P. S., Gallo R. C. Terminal deoxynucleotidyltransferase in chronic myelogenous leukemia. J Biol Chem. 1974 Dec 25;249(24):8051–8053. [PubMed] [Google Scholar]
  21. Srivastava B. I. Deoxynucleotide-polymerizing enzymes in normal and malignant human cells. Cancer Res. 1974 May;34(5):1015–1026. [PubMed] [Google Scholar]
  22. Srivastava B. I., DiCioccio R. A., Rinehart K. L., Jr, Li L. H. Preferential inhibition of terminal deoxynucleotidyltransferase activity among deoxyribonucleic acid polymerase activities of leukemic and normal cells by geldanamycin, streptoval C, streptovarone, and dapmavarone. Mol Pharmacol. 1978 May;14(3):442–447. [PubMed] [Google Scholar]
  23. Srivastava B. I., Khan S. A., Minowada J., Gomez G. A., Rakowski I. Terminal deoxynucleotidyl transferase activity in blastic phase of chronic myelogenous leukemia. Cancer Res. 1977 Oct;37(10):3612–3618. [PubMed] [Google Scholar]
  24. Weissbach A., Hong S. C., Aucker J., Muller R. Characterization of herpes simplex virus-induced deoxyribonucleic acid polymerase. J Biol Chem. 1973 Sep 25;248(18):6270–6277. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES