Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1981 Dec;20(6):741–746. doi: 10.1128/aac.20.6.741

Cefoxitin pharmacokinetics: relation to three different renal clearance studies in patients with various degrees of renal insufficiency.

D Kampf, R Schurig, I Korsukewitz, O Brückner
PMCID: PMC181793  PMID: 7325641

Abstract

The pharmacokinetics of cefoxitin were examined in 4 healthy volunteers, 6 patients with normal renal function (inulin clearance, greater than 80 ml/min per 1.73 m2), and 35 patients with various degrees of renal insufficiency (inulin clearance, 80 to less than 5 ml/min per 1.73 m2). A single dose of 30 mg of cefoxitin per kg of body weight was injected intravenously over 3 min. Antibiotic concentrations in plasma were determined by the agar diffusion technique. The cefoxitin half-life increased progressively from 39 min in subjects with normal renal function to 23.5 h in oligoanuric patients. Correspondingly, total body clearance decreased from 340 to 13 ml/min per 1.73 m2. In addition to the study of cefoxitin kinetics, in 29 of the 41 patients, three different renal clearance tests were performed (inulin, p-aminohippurate, and creatinine clearances). Of these, p-aminohippurate clearance showed the best correlation with the elimination rate constant beta as well as total body clearance of cefoxitin; but with respect to beta, the differences between the p-aminohippurate and creatinine clearances were quantitatively negligible. Therefore, even in substances which are eliminated predominantly by active tubular secretion, creatinine clearance could be recommended for dosage adjustments.

Full text

PDF
741

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvidsson A., Borgå O., Alván G. Renal excretion of cephapirin and cephaloridine: evidence for saturable tubular reabsorption. Clin Pharmacol Ther. 1979 Jun;25(6):870–876. doi: 10.1002/cpt1979256870. [DOI] [PubMed] [Google Scholar]
  2. Averdunk R., Borner K. Korrelation der Thromboplastinzeiten bei Dicumarol-behandelten Patienten unter Verwendung verschiedener Thrombokinase-Präparate. Z Klin Chem Klin Biochem. 1970 May;8(3):263–268. [PubMed] [Google Scholar]
  3. BRICKER N. S., MORRIN P. A., KIME S. W., Jr The pathologic physiology of chronic Bright's disease. An exposition of the "intact nephron hypothesis". Am J Med. 1960 Jan;28:77–98. doi: 10.1016/0002-9343(60)90225-4. [DOI] [PubMed] [Google Scholar]
  4. Bastl C., Katz M. A., Shear L. Uremia with low serum creatinine-an entity produced by marked creatinine secretion. Am J Med Sci. 1977 May-Jun;273(3):289–292. [PubMed] [Google Scholar]
  5. Bennett W. M., Singer I., Golper T., Feig P., Coggins C. J. Guidelines for drug therapy in renal failure. Ann Intern Med. 1977 Jun;86(6):754–783. doi: 10.7326/0003-4819-86-6-754. [DOI] [PubMed] [Google Scholar]
  6. Cafruny E. J. Renal tubular handling of drugs. Am J Med. 1977 Apr;62(4):490–496. doi: 10.1016/0002-9343(77)90403-x. [DOI] [PubMed] [Google Scholar]
  7. Coles G. A. Body composition in chronic renal failure. Q J Med. 1972 Jan;41(161):25–47. [PubMed] [Google Scholar]
  8. Dettli L. Drug dosage in renal disease. Clin Pharmacokinet. 1976;1(2):126–134. doi: 10.2165/00003088-197601020-00004. [DOI] [PubMed] [Google Scholar]
  9. Fabre J., Balant L. Renal failure, drug pharmacokinetics and drug action. Clin Pharmacokinet. 1976;1(2):99–120. doi: 10.2165/00003088-197601020-00002. [DOI] [PubMed] [Google Scholar]
  10. Preuss H. G., Massry S. G., Maher J. F., Gilliece M., Schreiner G. E. Effects of uremic sera on renal tubular P-aminohippurate transport. Nephron. 1966;3(5):265–273. doi: 10.1159/000179541. [DOI] [PubMed] [Google Scholar]
  11. Reidenberg M. M. The binding of drugs to plasma proteins and the interpretation of measurements of plasma concentrations of drugs in patients with poor renal function. Am J Med. 1977 Apr;62(4):466–470. doi: 10.1016/0002-9343(77)90398-9. [DOI] [PubMed] [Google Scholar]
  12. SWANSON R. E., HAKIM A. A. Stop-flow analysis of creatinine excretion in the dog. Am J Physiol. 1962 Dec;203:980–984. doi: 10.1152/ajplegacy.1962.203.6.980. [DOI] [PubMed] [Google Scholar]
  13. Schrogie J. J., Davies R. O., Yeh K. C., Rogers D., Holmes G. I., Skeggs H., Martin C. M. Bioavailability and pharmacokinetics of cefoxitin sodium. J Antimicrob Chemother. 1978 Jul;4(B):69–78. doi: 10.1093/jac/4.suppl_b.69. [DOI] [PubMed] [Google Scholar]
  14. Teschan P. E. On the pathogenesis of uremia. Am J Med. 1970 Jun;48(6):671–677. doi: 10.1016/s0002-9343(70)80001-8. [DOI] [PubMed] [Google Scholar]
  15. Tune B. M., Fernholt M. Relationship between cephaloridine and p-aminohippurate transport in the kidney. Am J Physiol. 1973 Nov;225(5):1114–1117. doi: 10.1152/ajplegacy.1973.225.5.1114. [DOI] [PubMed] [Google Scholar]
  16. Tune B. M. Relationship between the transport and toxicity of cephalosporins in the kidney. J Infect Dis. 1975 Aug;132(2):189–194. doi: 10.1093/infdis/132.2.189. [DOI] [PubMed] [Google Scholar]
  17. WEINER I. M., MUDGE G. H. RENAL TUBULAR MECHANISMS FOR EXCRETION OF ORGANIC ACIDS AND BASES. Am J Med. 1964 May;36:743–762. doi: 10.1016/0002-9343(64)90183-4. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES