Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1982 Apr;21(4):595–600. doi: 10.1128/aac.21.4.595

Modulation of bleomycin cytotoxicity.

C W Moore
PMCID: PMC181948  PMID: 6177286

Abstract

Lethal effects of a 75-microgram/ml concentration (approximately 5 X 10-5 M) of bleomycin on stationary-phase haploid or diploid cells of the eucaryote Saccharomyces cerevisiae were negated in the presence of 0.05 M phosphate buffer (pH 7). High cell densities (2 X 10(8) cells per ml) further inhibited killing. Multiphasic survival curves resulting after treatments in deionized water (pH 6.7) suggested the presence of cells with differing susceptibilities either at the start of treatment periods or as a result of resistance which developed during exposure to antibiotic. To identify a delayed effect, prolonged lethal consequences of the action of bleomycin were investigated under liquid-holding conditions. Survival of untreated early-stationary-phase yeast cells was not significantly affected by incubation without antibiotic for 6 or 36 h in non-nutrient buffer or water. However, increased killing resulted after bleomycin-treated cells were incubated in the absence of bleomycin or buffer. Moreover, cells which had never been exposed to the antibiotic lost considerable colony-forming ability as a result of incubation with bleomycin-treated cells, indicating the efflux of bleomycin or a reaction product. The findings have implications for both experimental cell studies and cancer therapy, as well as for the chemical mechanisms by which a metal bleomycin complex could cause killing.

Full text

PDF
595

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishun N. P., Smith N. S., Williams D. C. Bleomycin (review). Oncology. 1978;35(5):228–234. doi: 10.1159/000225294. [DOI] [PubMed] [Google Scholar]
  2. Hahn G. M., Ray G. R., Gordon L. F., Kallman R. F. Response of solid tumor cells exposed to chemotherapeutic agents in vivo: cell survival after 2- and 24-hour exposure. J Natl Cancer Inst. 1973 Feb;50(2):529–533. doi: 10.1093/jnci/50.2.529. [DOI] [PubMed] [Google Scholar]
  3. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Johnston L. H., Nasmyth K. A. Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature. 1978 Aug 31;274(5674):891–893. doi: 10.1038/274891a0. [DOI] [PubMed] [Google Scholar]
  5. McCord J. M., Day E. D., Jr Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978 Feb 1;86(1):139–142. doi: 10.1016/0014-5793(78)80116-1. [DOI] [PubMed] [Google Scholar]
  6. Moore C. W. Bleomycin-induced mutation and recombination in Saccharomyces cerevisiae. Mutat Res. 1978 Sep;58(1):41–49. doi: 10.1016/0165-1218(78)90094-0. [DOI] [PubMed] [Google Scholar]
  7. Moore C. W. Control of in vivo (cellular) phleomycin sensitivity by nuclear genotype, growth phase, and metal ions. Cancer Res. 1982 Mar;42(3):929–933. [PubMed] [Google Scholar]
  8. Moore C. W. Isolation and partial characterization of mutants of Saccharomyces cerevisiae altered in sensitivities to lethal effects of bleomycins. J Antibiot (Tokyo) 1980 Nov;33(11):1369–1375. doi: 10.7164/antibiotics.33.1369. [DOI] [PubMed] [Google Scholar]
  9. Moore C. W. Responses of radiation-sensitive mutants of Saccharomyces cerevisiae to lethal effects of bleomycin. Mutat Res. 1978 Aug;51(2):165–180. doi: 10.1016/s0027-5107(78)80016-5. [DOI] [PubMed] [Google Scholar]
  10. Moore C. W., Schmick A. Genetic effects of impure and pure saccharin in yeast. Science. 1979 Sep 7;205(4410):1007–1010. doi: 10.1126/science.382356. [DOI] [PubMed] [Google Scholar]
  11. Müller W. E., Zahn R. K. Bleomycin, an antibiotic that removes thymine from double-stranded DNA. Prog Nucleic Acid Res Mol Biol. 1977;20:21–57. doi: 10.1016/s0079-6603(08)60469-9. [DOI] [PubMed] [Google Scholar]
  12. Onishi T., Iwata H., Takagi Y. Effects of reducing and oxidizing agents on the action of bleomycin. J Biochem. 1975 Apr;77(4):745–752. doi: 10.1093/oxfordjournals.jbchem.a130778. [DOI] [PubMed] [Google Scholar]
  13. Ray G. R., Hahn G. M., Bagshaw M. A., Kurkjian S. Cell survival and repair of plateau-phase cultures after chemotherapy--relevance to tumor therapy and to the in vitro screening of new agents. Cancer Chemother Rep. 1973 Nov-Dec;57(4):473–475. [PubMed] [Google Scholar]
  14. Roizin-Towle L., Hall E. J. Studies with bleomycin and misonidazole on aerated and hypoxic cells. Br J Cancer. 1978 Feb;37(2):254–260. doi: 10.1038/bjc.1978.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sausville E. A., Peisach J., Horwitz S. B. A role for ferrous ion and oxygen in the degradation of DNA by bleomycin. Biochem Biophys Res Commun. 1976 Dec 6;73(3):814–822. doi: 10.1016/0006-291x(76)90882-2. [DOI] [PubMed] [Google Scholar]
  16. Sausville E. A., Stein R. W., Peisach J., Horwitz S. B. Properties and products of the degradation of DNA by bleomycin and iron(II). Biochemistry. 1978 Jul 11;17(14):2746–2754. doi: 10.1021/bi00607a008. [DOI] [PubMed] [Google Scholar]
  17. Suzuki H., Nagai K., Yamaki H., Tanaka N., Umezawa H. Mechanism of action of bleomycin. Studies with the growing culture of bacterial and tumor cells. J Antibiot (Tokyo) 1968 Jun;21(6):379–386. doi: 10.7164/antibiotics.21.379. [DOI] [PubMed] [Google Scholar]
  18. Takabe Y., Miyamoto T., Terashima T. Demonstration of repair of potentially lethal damage in plateau phase cells of Ehrlich ascites tumor after exposure to bleomycin. Gan. 1974 Dec;65(6):559–560. [PubMed] [Google Scholar]
  19. Twentyman P. R. An artefact in clonogenic assays of bleomycin cytotoxicity. Br J Cancer. 1977 Nov;36(5):642–644. doi: 10.1038/bjc.1977.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Twentyman P. R., Bleehen N. M. Studies of "potentially lethal damage" in EMT6 mouse tumour cells treated with bleomycin either in vitro or in vivo. Br J Cancer. 1975 Oct;32(4):491–501. doi: 10.1038/bjc.1975.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vig B. K., Lewis R. Genetic toxicology of bleomycin. Mutat Res. 1978;55(2):121–145. doi: 10.1016/0165-1110(78)90019-2. [DOI] [PubMed] [Google Scholar]
  22. Yamagami H., Ishizawa M., Endo H. Phenotypic and genetic characteristics of bleomycin-sensitive strain of Escherichia coli. Gan. 1974 Feb;65(1):61–67. [PubMed] [Google Scholar]
  23. deAlvare L. R., Goda K., Kimura T. Mechanism of superoxide anion scavenging reaction by bis-(salicylato)-copper (II) complex. Biochem Biophys Res Commun. 1976 Apr 5;69(3):687–694. doi: 10.1016/0006-291x(76)90930-x. [DOI] [PubMed] [Google Scholar]
  24. van Hemmen J. J., Meuling W. J. Inactivation of Escherichia coli by superoxide radicals and their dismutation products. Arch Biochem Biophys. 1977 Aug;182(2):743–748. doi: 10.1016/0003-9861(77)90556-2. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES