Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 May;59(5):1367–1375. doi: 10.1128/aem.59.5.1367-1375.1993

Growth, Nitrogen Fixation, and Spectral Attenuation in Cultivated Trichodesmium Species

Lee Prufert-Bebout 1,†,*, Hans W Paerl 1, Carsten Lassen 1
PMCID: PMC182091  PMID: 16348931

Abstract

Physiological studies of Trichodesmium species have been hindered by difficulties in maintaining actively growing, nitrogen-fixing cultures. Previous cultivation successes have not been widely duplicated. We present here a simple modified seawater medium and handling techniques which have been used to maintain actively growing Trichodesmium thiebautii in laboratory culture for over 1 year. The cultured population, isolated from coastal Atlantic waters, has a growth rate of 0.23 division day-1 and exhibits light-dependent nitrogen fixation during exponential growth. Various morphologies, including solitary trichomes, and aggregates (spherical puffs and fusiform tufts) are present during growth. Spectral and scalar irradiance were measured within naturally occurring (coastal Atlantic) aggregates with small (diameter, 50 to 70 μm) spherical fiber-optic sensors. In contrast to naturally occurring puffs, cultivated Trichodesmium aggregates exhibited spectral properties consistent with low-light adaptation. Cultivated puff-type aggregates were also examined by using oxygen microelectrodes. The simple medium and approach used for cultivation should be easily reproducible and amenable to further manipulations and modifications useful for physiological studies of Trichodesmium spp. in culture.

Full text

PDF
1367

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capone D. G., O'neil J. M., Zehr J., Carpenter E. J. Basis for Diel Variation in Nitrogenase Activity in the Marine Planktonic Cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol. 1990 Nov;56(11):3532–3536. doi: 10.1128/aem.56.11.3532-3536.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carpenter E. J., Price C. C. Marine oscillatoria (Trichodesmium): explanation for aerobic nitrogen fixation without heterocysts. Science. 1976 Mar 26;191(4233):1278–1280. doi: 10.1126/science.1257749. [DOI] [PubMed] [Google Scholar]
  3. Fay P. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev. 1992 Jun;56(2):340–373. doi: 10.1128/mr.56.2.340-373.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Paerl H. W., Bebout B. M. Direct measurement of o2-depleted microzones in marine oscillatoria: relation to n2 fixation. Science. 1988 Jul 22;241(4864):442–445. doi: 10.1126/science.241.4864.442. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES