Abstract
O methylation of acetovanillone at 4 position by C2H3Cl and S-adenosyl[methyl-2H3]methionine was monitored in whole mycelia of Phanerochaete chrysosporium in the presence and absence of S-adenosylhomocysteine. Both the amount of the methylation product, 3,4-dimethoxyacetophenone, and the percent C2H3 incorporation into the 4-methoxyl group of the compound were determined. The results strongly suggest the presence of biochemically distinct systems for O methylation of acetovanillone utilizing S-adenosylmethionine and chloromethane, respectively, as the methyl donor. The S-adenosylmethionine-dependent enzyme is induced early in the growth cycle, with activity attaining an initial maximum after 55 h of incubation. Methylation by this enzyme is totally suppressed by 1 mM S-adenosylhomocysteine over almost the entire growth cycle. S-Adenosylmethionine-dependent O-methyltransferase activity is detectable in cell extracts, and the purification and characterization of the enzyme are described elsewhere (C. Coulter, J. T. Kennedy, W. C. McRoberts, and D. B. Harper, Appl. Environ. Microbiol. 59:706-711, 1993). The chloromethane-utilizing methylation system is absent in early growth but attains peak activity in the mid-growth phase after 72 h of incubation. The system is not significantly inhibited by S-adenosylhomocysteine at any stage of growth. No chloromethane-dependent O-methyltransferase activity is detectable in cell extract, suggesting that the enzyme is membrane bound and/or part of a multienzyme complex. Although the biochemical role of the chloromethane-dependent methylation system in metabolism is not known, one possible function could be the regeneration of veratryl alcohol degraded by the attack of lignin peroxidase.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coulter C., Kennedy J. T., McRoberts W. C., Harper D. B. Purification and Properties of an S-Adenosylmethionine: 2,4-Disubstituted Phenol O-Methyltransferase from Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Mar;59(3):706–711. doi: 10.1128/aem.59.3.706-711.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faison B. D., Kirk T. K., Farrell R. L. Role of Veratryl Alcohol in Regulating Ligninase Activity in Phanerochaete chrysosporium. Appl Environ Microbiol. 1986 Aug;52(2):251–254. doi: 10.1128/aem.52.2.251-254.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harper D. B., Buswell J. A., Kennedy J. T., Hamilton J. T. Chloromethane, Methyl Donor in Veratryl Alcohol Biosynthesis in Phanerochaete chrysosporium and Other Lignin-Degrading Fungi. Appl Environ Microbiol. 1990 Nov;56(11):3450–3457. doi: 10.1128/aem.56.11.3450-3457.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harper David B., Hamilton John T. G., Kennedy James T., McNally Kieran J. Chloromethane, a Novel Methyl Donor for Biosynthesis of Esters and Anisoles in Phellinus pomaceus. Appl Environ Microbiol. 1989 Aug;55(8):1981–1989. doi: 10.1128/aem.55.8.1981-1989.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
- Valli K., Wariishi H., Gold M. H. Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry. 1990 Sep 18;29(37):8535–8539. doi: 10.1021/bi00489a005. [DOI] [PubMed] [Google Scholar]
