Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Jun;59(6):1731–1734. doi: 10.1128/aem.59.6.1731-1734.1993

Comparison of the azoreductase and nitroreductase from Clostridium perfringens.

F Rafii 1, C E Cerniglia 1
PMCID: PMC182152  PMID: 8328797

Abstract

The purified azoreductase and nitroreductase of Clostridium perfringens, which have similar electrophoretic properties, both reacted in a Western blot (immunoblot) with a polyclonal antibody raised against the azoreductase. The activity of both enzymes was enhanced by flavin adenine dinucleotide and was inhibited by menadione, o-iodosobenzoic acid, and the antibody against azoreductase. Reduction of the azo dye Direct Blue 15 by the azoreductase was inhibited by nitroaromatic compounds. The apparent Km of the enzyme for reduction of Direct Blue 15 in the presence of 1-nitropyrene was higher than the Km with the azo dye alone, demonstrating competitive inhibition. The data show that the same protein is involved in the reduction of both azo dyes and nitroaromatic compounds.

Full text

PDF
1731

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. P. Reduction of polymeric azo and nitro dyes by intestinal bacteria. Appl Environ Microbiol. 1981 May;41(5):1283–1286. doi: 10.1128/aem.41.5.1283-1286.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cerniglia C. E., Freeman J. P., Franklin W., Pack L. D. Metabolism of azo dyes derived from benzidine, 3,3'-dimethyl-benzidine and 3,3'-dimethoxybenzidine to potentially carcinogenic aromatic amines by intestinal bacteria. Carcinogenesis. 1982;3(11):1255–1260. doi: 10.1093/carcin/3.11.1255. [DOI] [PubMed] [Google Scholar]
  3. Cerniglia C. E. Metabolism of 1-nitropyrene and 6-nitrobenzo(a)pyrene by intestinal microflora. Prog Clin Biol Res. 1985;181:133–137. [PubMed] [Google Scholar]
  4. Chinchetru M. A., Cabezas J. A., Calvo P. Purification and characterization of a broad specificity beta-glucosidase from sheep liver. Int J Biochem. 1989;21(5):469–476. doi: 10.1016/0020-711x(89)90126-2. [DOI] [PubMed] [Google Scholar]
  5. Douch P. G. Azo-and nitro-reductase activities and cytochromes of Axcaris lumbricoides var suum and Moniezia expansa. Xenobiotica. 1976 Sep;6(9):531–536. doi: 10.3109/00498257609151665. [DOI] [PubMed] [Google Scholar]
  6. Douch P. G., Blair S. S. The metabolism of foreign compounds in the cestode, Moniezia expansa, and the nematode, Ascaris lumbricoides var suum. Xenobiotica. 1975 May;5(5):279–292. doi: 10.3109/00498257509052062. [DOI] [PubMed] [Google Scholar]
  7. Douch P. G. The effect of flavins and enzyme inhibitors on 4-nitrobenzoic acid reductase and azo reductase of Ascaris lumbricoides var suum. Xenobiotica. 1975 Nov;5(11):657–663. doi: 10.3109/00498257509056135. [DOI] [PubMed] [Google Scholar]
  8. Fujita S., Peisach J. The stimulation of microsomal azoreduction by flavins. Biochim Biophys Acta. 1982 Nov 24;719(2):178–189. doi: 10.1016/0304-4165(82)90087-3. [DOI] [PubMed] [Google Scholar]
  9. Gingell R., Walker R. Mechanisms of azo reduction by Streptococcus faecalis. II. The role of soluble flavins. Xenobiotica. 1971 May;1(3):231–239. doi: 10.3109/00498257109033172. [DOI] [PubMed] [Google Scholar]
  10. Grogan Dennis W. Evidence that beta-Galactosidase of Sulfolobus solfataricus Is Only One of Several Activities of a Thermostable beta-d-Glycosidase. Appl Environ Microbiol. 1991 Jun;57(6):1644–1649. doi: 10.1128/aem.57.6.1644-1649.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howard P. C., Beland F. A., Cerniglia C. E. Reduction of the carcinogen 1-nitropyrene to 1-aminopyrene by rat intestinal bacteria. Carcinogenesis. 1983 Aug;4(8):985–990. doi: 10.1093/carcin/4.8.985. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Levine W. G., Raza H. Mechanism of azoreduction of dimethylaminoazobenzene by rat liver NADPH-cytochrome P-450 reductase and partially purified cytochrome P-450. Oxygen and carbon monoxide sensitivity and stimulation by FAD and FMN. Drug Metab Dispos. 1988 May-Jun;16(3):441–448. [PubMed] [Google Scholar]
  14. Mallett A. K., King L. J., Walker R. A continuous spectrophotometric determination of hepatic microsomal azo reductase activity and its dependence on cytochrome P-450. Biochem J. 1982 Mar 1;201(3):589–595. doi: 10.1042/bj2010589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mallett A. K., King L. J., Walker R. Solubilisation, purification and reconstitution of hepatic microsomal azoreductase activity. Biochem Pharmacol. 1985 Feb 1;34(3):337–342. doi: 10.1016/0006-2952(85)90041-3. [DOI] [PubMed] [Google Scholar]
  16. Manning B. W., Campbell W. L., Franklin W., Delclos K. B., Cerniglia C. E. Metabolism of 6-nitrochrysene by intestinal microflora. Appl Environ Microbiol. 1988 Jan;54(1):197–203. doi: 10.1128/aem.54.1.197-203.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rafii F., Franklin W., Cerniglia C. E. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol. 1990 Jul;56(7):2146–2151. doi: 10.1128/aem.56.7.2146-2151.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rafii F., Smith D. B., Benson R. W., Cerniglia C. E. Immunological homology among azoreductases from Clostridium and Eubacterium strains isolated from human intestinal microflora. J Basic Microbiol. 1992;32(2):99–105. doi: 10.1002/jobm.3620320204. [DOI] [PubMed] [Google Scholar]
  19. Rafil F., Franklin W., Heflich R. H., Cerniglia C. E. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl Environ Microbiol. 1991 Apr;57(4):962–968. doi: 10.1128/aem.57.4.962-968.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Walker R., Ryan A. J. Some molecular parameters influencing rate of reduction of azo compounds by intestinal microflora. Xenobiotica. 1971 Jul-Oct;1(4):483–486. doi: 10.3109/00498257109041513. [DOI] [PubMed] [Google Scholar]
  22. Zachariah P. K., Juchau M. R. The role of gut flora in the reduction of aromatic nitro-groups. Drug Metab Dispos. 1974 Jan-Feb;2(1):74–78. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES