Abstract
Studies in microbial ecology require accurate measures of cell number and biomass. Although epifluorescence microscopy is an accepted and dependable method for determining cell numbers, current methods of converting biovolume to biomass are error prone, tedious, and labor-intensive. This paper describes a technique with sedimentation field-flow fractionation to enumerate bacteria and determine their density, size, and mass. Using cultured cells of different shapes and sizes, we determined optimum values for separation run parameters and sample-handling procedures. The technique described can separate and detect 4′, 6-diamidino-2-phenylindole-stained cells and generate a fractogram from which cell numbers and their size or mass distribution can be calculated. A direct method for estimating bacterial biomass (dry organic matter content) which offers distinct advantages over present methods for calculating biomass has been developed.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albright L. J., McCrae S. K. Annual cycle of bacterial specific biovolumes in howe sound, a canadian west coast fjord sound. Appl Environ Microbiol. 1987 Dec;53(12):2739–2744. doi: 10.1128/aem.53.12.2739-2744.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakken L. R., Olsen R. A. Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl Environ Microbiol. 1983 Apr;45(4):1188–1195. doi: 10.1128/aem.45.4.1188-1195.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjørnsen P. K., Riemann B., Pock-Steen J., Nielsen T. G., Horsted S. J. Regulation of bacterioplankton production and cell volume in a eutrophic estuary. Appl Environ Microbiol. 1989 Jun;55(6):1512–1518. doi: 10.1128/aem.55.6.1512-1518.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bratbak G. Bacterial biovolume and biomass estimations. Appl Environ Microbiol. 1985 Jun;49(6):1488–1493. doi: 10.1128/aem.49.6.1488-1493.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bratbak G., Dundas I. Bacterial dry matter content and biomass estimations. Appl Environ Microbiol. 1984 Oct;48(4):755–757. doi: 10.1128/aem.48.4.755-757.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caldwell K. D. Field-flow fractionation. Anal Chem. 1988 Sep 1;60(17):959A–971A. doi: 10.1021/ac00168a001. [DOI] [PubMed] [Google Scholar]
- Giddings J. C., Caldwell K. D. Field-flow fractionation: choices in programmed and nonprogrammed operation. Anal Chem. 1984 Oct;56(12):2093–2099. doi: 10.1021/ac00276a027. [DOI] [PubMed] [Google Scholar]
- Giddings J. C., Myers M. N., Caldwell K. D., Fisher S. R. Analysis of biological macromolecules and particles by field-flow fractionation. Methods Biochem Anal. 1980;26:79–136. doi: 10.1002/9780470110461.ch3. [DOI] [PubMed] [Google Scholar]
- Giddings J. C., Williams P. S., Beckett R. Fractionating power in programmed field-flow fractionation: exponential sedimentation field decay. Anal Chem. 1987 Jan 1;59(1):28–37. doi: 10.1021/ac00128a007. [DOI] [PubMed] [Google Scholar]
- Heldal M., Norland S., Tumyr O. X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl Environ Microbiol. 1985 Nov;50(5):1251–1257. doi: 10.1128/aem.50.5.1251-1257.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S., Fuhrman J. A. Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton. Appl Environ Microbiol. 1987 Jun;53(6):1298–1303. doi: 10.1128/aem.53.6.1298-1303.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagata T. Carbon and nitrogen content of natural planktonic bacteria. Appl Environ Microbiol. 1986 Jul;52(1):28–32. doi: 10.1128/aem.52.1.28-32.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novitsky J. A., Morita R. Y. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol. 1976 Oct;32(4):617–622. doi: 10.1128/aem.32.4.617-622.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson B. R., Button D. K. Characterizing aquatic bacteria according to population, cell size, and apparent DNA content by flow cytometry. Cytometry. 1989 Jan;10(1):70–76. doi: 10.1002/cyto.990100112. [DOI] [PubMed] [Google Scholar]
- Torrella F., Morita R. Y. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl Environ Microbiol. 1981 Feb;41(2):518–527. doi: 10.1128/aem.41.2.518-527.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dilla M. A., Langlois R. G., Pinkel D., Yajko D., Hadley W. K. Bacterial characterization by flow cytometry. Science. 1983 May 6;220(4597):620–622. doi: 10.1126/science.6188215. [DOI] [PubMed] [Google Scholar]
- Williams P. S., Giddings J. C. Comparison of power and exponential field programming in field-flow fractionation. J Chromatogr. 1991 Jul 26;550(1-2):787–797. doi: 10.1016/s0021-9673(01)88582-4. [DOI] [PubMed] [Google Scholar]
- Williams P. S., Giddings J. C. Power programmed field-flow fractionation: a new program form for improved uniformity of fractionating power. Anal Chem. 1987 Sep 1;59(17):2038–2044. doi: 10.1021/ac00144a007. [DOI] [PubMed] [Google Scholar]
- van Veen J. A., Paul E. A. Conversion of biovolume measurements of soil organisms, grown under various moisture tensions, to biomass and their nutrient content. Appl Environ Microbiol. 1979 Apr;37(4):686–692. doi: 10.1128/aem.37.4.686-692.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
