Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Jun;59(6):1963–1965. doi: 10.1128/aem.59.6.1963-1965.1993

Influence of pH and Temperature on Enumeration of Cellulose- and Hemicellulose-Degrading Thermophilic Anaerobes in Neutral and Alkaline Icelandic Hot Springs

Indra M Mathrani 1, Peter Nielsen 1, Jacob Sonne-Hansen 1, Jakob K Kristjánsson 1, Birgitte K Ahring 1,*
PMCID: PMC182194  PMID: 16348972

Abstract

Cellulose- and hemicellulose-degrading thermophilic anaerobes were enumerated in biomat samples of various temperatures from two different hot springs in the Hveragerǒi area of Iceland: one spring had a pH near 7, the second had a pH near 9. The most-probable-number technique was used for enumeration of bacteria in the samples, with media at many different temperatures (37 to 90°C) and two pH values (7 and 9). There were generally more xylan-degrading then cellulose-utilizing organisms in both environments. There was no growth at 80°C in the neutral spring or at 37°C in the alkaline spring. However, there were large numbers of both types of organisms in the alkaline spring at 80°C and in the neutral spring at 37°C. No cultures grew from the most-probable-number tubes inoculated with the Hveragerǒi samples and incubated at 90°C or with media at pH 9. However, xylan-degrading cultures at 70°C were enriched at pH 9 with samples from some other Icelandic hot springs.

Full text

PDF
1963

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelidaki I., Petersen S. P., Ahring B. K. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol. 1990 Jul;33(4):469–472. doi: 10.1007/BF00176668. [DOI] [PubMed] [Google Scholar]
  2. Bergquist P. L., Love D. R., Croft J. E., Streiff M. B., Daniel R. M., Morgan W. H. Genetics and potential biotechnological applications of thermophilic and extremely thermophilic micro-organisms. Biotechnol Genet Eng Rev. 1987;5:199–244. doi: 10.1080/02648725.1987.10647838. [DOI] [PubMed] [Google Scholar]
  3. Brock T. D. Life at high temperatures. Science. 1985 Oct 11;230(4722):132–138. doi: 10.1126/science.230.4722.132. [DOI] [PubMed] [Google Scholar]
  4. Kakinuma Y. Lowering of cytoplasmic pH is essential for growth of Streptococcus faecalis at high pH. J Bacteriol. 1987 Sep;169(9):4403–4405. doi: 10.1128/jb.169.9.4403-4405.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kristjansson J. K., Alfredsson G. A. Distribution of Thermus spp. in Icelandic Hot Springs and a Thermal Gradient. Appl Environ Microbiol. 1983 Jun;45(6):1785–1789. doi: 10.1128/aem.45.6.1785-1789.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Murty M. V., Chandra T. S. Isolation and characterization of xylose- and xylan-utilizing anaerobic bacteria. Antonie Van Leeuwenhoek. 1989;55(2):153–163. doi: 10.1007/BF00404755. [DOI] [PubMed] [Google Scholar]
  7. Revsbech N. P., Ward D. M. Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol. 1984 Aug;48(2):270–275. doi: 10.1128/aem.48.2.270-275.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sissons C. H., Sharrock K. R., Daniel R. M., Morgan H. W. Isolation of cellulolytic anaerobic extreme thermophiles from new zealand thermal sites. Appl Environ Microbiol. 1987 Apr;53(4):832–838. doi: 10.1128/aem.53.4.832-838.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sprott G. D., Shaw K. M., Jarrell K. F. Ammonia/potassium exchange in methanogenic bacteria. J Biol Chem. 1984 Oct 25;259(20):12602–12608. [PubMed] [Google Scholar]
  10. Weimer P. J., Wagner L. W., Knowlton S., Ng T. K. Thermophilic anaerobic bacteria which ferment hemicellulose: characterization of organisms and identification of plasmids. Arch Microbiol. 1984 May;138(1):31–36. doi: 10.1007/BF00425403. [DOI] [PubMed] [Google Scholar]
  11. Wiegel J., Ljungdahl L. G., Rawson J. R. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol. 1979 Sep;139(3):800–810. doi: 10.1128/jb.139.3.800-810.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wiegel J., Mothershed C. P., Puls J. Differences in Xylan Degradation by Various Noncellulolytic Thermophilic Anaerobes and Clostridium thermocellum. Appl Environ Microbiol. 1985 Mar;49(3):656–659. doi: 10.1128/aem.49.3.656-659.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zeikus J. G., Ben-Bassat A., Hegge P. W. Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol. 1980 Jul;143(1):432–440. doi: 10.1128/jb.143.1.432-440.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES