Abstract
A white Thermus sp. strain, NCIMB 11245, showed high levels of anteiso C17:0, anteiso C17:1, normal C16:1, and iso C16:0 with low levels of iso C15:0 + iso C17:0 in comparison to yellow-pigmented strains. The fatty acid composition may be associated with precursor metabolism or the absence of carotene pigmentation.
Full text
PDF

Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Degryse E., Glansdorff N., Piérard A. A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol. 1978 May 30;117(2):189–196. doi: 10.1007/BF00402307. [DOI] [PubMed] [Google Scholar]
- Gantotti B. V., Beer S. V. Plasmid-borne determinants of pigmentation and thiamine prototrophy in Erwinia herbicola. J Bacteriol. 1982 Sep;151(3):1627–1629. doi: 10.1128/jb.151.3.1627-1629.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang L., Haug A. Regulation of membrane lipid fluidity in Acholeplasma laidlawii: effect of carotenoid pigment content. Biochim Biophys Acta. 1974 Jun 29;352(3):361–370. doi: 10.1016/0005-2736(74)90228-4. [DOI] [PubMed] [Google Scholar]
- Jackson T. J., Ramaley R. F., Meinschein W. G. Fatty acids of a non-pigmented, thermophilic bacterium similar to Thermus aquaticus. Arch Mikrobiol. 1973;88(2):127–133. doi: 10.1007/BF00424766. [DOI] [PubMed] [Google Scholar]
- Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev. 1977 Jun;41(2):391–418. doi: 10.1128/br.41.2.391-418.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneda T. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev. 1991 Jun;55(2):288–302. doi: 10.1128/mr.55.2.288-302.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munster M. J., Munster A. P., Sharp R. J. Incidence of Plasmids in Thermus spp. Isolated in Yellowstone National Park. Appl Environ Microbiol. 1985 Nov;50(5):1325–1327. doi: 10.1128/aem.50.5.1325-1327.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordström K. M., Laakso S. V. Effect of growth temperature on fatty acid composition of ten thermus strains. Appl Environ Microbiol. 1992 May;58(5):1656–1660. doi: 10.1128/aem.58.5.1656-1660.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshima M., Miyagawa A. Comparative studies on the fatty acid composition of moderately and extremely thermophilic bacteria. Lipids. 1974 Jul;9(7):476–480. doi: 10.1007/BF02534274. [DOI] [PubMed] [Google Scholar]
- Pask-Hughes R., Williams R. A. Extremely thermophilic gram-negative bacteria from hot tap water. J Gen Microbiol. 1975 Jun;88(2):321–328. doi: 10.1099/00221287-88-2-321. [DOI] [PubMed] [Google Scholar]
- Ramaley R. F., Hixson J. Isolation of a nonpigmented, thermophilic bacterium similar to Thermophilic bacterium similar to Thermus aquaticus. J Bacteriol. 1970 Aug;103(2):527–528. doi: 10.1128/jb.103.2.527-528.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell N. J. Adaptation to temperature in bacterial membranes. Biochem Soc Trans. 1983 Aug;11(4):333–335. doi: 10.1042/bst0110333. [DOI] [PubMed] [Google Scholar]
- Suutari M., Liukkonen K., Laakso S. Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol. 1990 Aug;136(8):1469–1474. doi: 10.1099/00221287-136-8-1469. [DOI] [PubMed] [Google Scholar]
- Wakayama N. Membrane properties of an extreme thermophile. II. Membrane functions underlying leucine transport and their relation with thermotropic phase transitions. J Biochem. 1978 Jun;83(6):1693–1698. doi: 10.1093/oxfordjournals.jbchem.a132082. [DOI] [PubMed] [Google Scholar]
