Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Jul;59(7):2007–2013. doi: 10.1128/aem.59.7.2007-2013.1993

Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus.

S E Maloney 1, A Maule 1, A R Smith 1
PMCID: PMC182228  PMID: 8357241

Abstract

Bacillus cereus SM3 was isolated on a mineral salts medium with Tween 80 as the primary carbon source. It was able to hydrolyze second- and third-generation pyrethroids, thereby generating noninsecticidal products. The enzyme responsible for this hydrolytic reaction was named permethrinase for this study. This is the first instance in which pyrethroid detoxification has been achieved with a cell-free microbial enzyme system. Permethrinase was purified by ion-exchange chromatography and gel filtration chromatography. The molecular mass of native permethrinase was 61 +/- 3 kDa, as estimated by Sephadex G-100 gel filtration. This novel microbial esterase seems to be a carboxylesterase. Permethrinase activity had an optimum pH of 7.5 and a temperature optimum of 37 degrees C. No cofactors or coenzymes were required for permethrinase activity. The enzyme may be a serine esterase, as it seems to be sensitive to the organophosphorus compound tetraethylpyrophosphate at concentrations in the micromolar range. Addition of dithiothreitol afforded permethrinase protection against the inhibitory effects of the sulfydryl agents p-chloromercuribenzoate and N-ethylmaleimide. The enzyme was stable over a range of temperatures. Cell extracts of strain SM3 also contained another esterase, which was active towards beta-naphthylacetate, but this enzyme was distinct from permethrinase.

Full text

PDF
2007

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott B. J., Fukuda D. Physical properties and kinetic behavior of a cephalosporin acetylesterase produced by Bacillus subtilis. Appl Microbiol. 1975 Sep;30(3):413–419. doi: 10.1128/am.30.3.413-419.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Chambers J. An introduction to the metabolism of pyrethroids. Residue Rev. 1980;73:101–124. doi: 10.1007/978-1-4612-6068-4_7. [DOI] [PubMed] [Google Scholar]
  4. Finkelstein A. E., Strawich E. S., Sonnino S. Characterization and partial purification of a lipase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1970 Jun 10;206(3):380–391. doi: 10.1016/0005-2744(70)90154-3. [DOI] [PubMed] [Google Scholar]
  5. Hipps P. P., Nelson D. R. Esterases from the midgut and gastric caecum of the American cockroach, Periplaneta americana (L.). Isolation and characterization. Biochim Biophys Acta. 1974 Apr 25;341(2):421–436. doi: 10.1016/0005-2744(74)90235-6. [DOI] [PubMed] [Google Scholar]
  6. Johnson L. M., Talbot H. W., Jr Detoxification of pesticides by microbial enzymes. Experientia. 1983 Nov 15;39(11):1236–1246. doi: 10.1007/BF01990361. [DOI] [PubMed] [Google Scholar]
  7. Junge W., Krisch K. The carboxylesterases/amidases of mammalian liver and their possible significance. CRC Crit Rev Toxicol. 1975 Aug;3(4):371–435. doi: 10.3109/10408447509079864. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. MYERS D. K., KEMP A., Jr Inhibition of esterases by the fluorides of organic acids. Nature. 1954 Jan 2;173(4392):33–34. doi: 10.1038/173033a0. [DOI] [PubMed] [Google Scholar]
  10. Maloney S. E., Maule A., Smith A. R. Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol. 1988 Nov;54(11):2874–2876. doi: 10.1128/aem.54.11.2874-2876.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maloney S. E., Maule A., Smith A. R. Transformation of synthetic pyrethroid insecticides by a thermophilic Bacillus sp. Arch Microbiol. 1992;158(4):282–286. doi: 10.1007/BF00245246. [DOI] [PubMed] [Google Scholar]
  12. Miyamoto J. Degradation, metabolism and toxicity of synthetic pyrethroids. Environ Health Perspect. 1976 Apr;14:15–28. doi: 10.1289/ehp.761415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nakagawa A., Tsujita T., Okuda H. Purification and some properties of intracellular esterase from Pseudomonas fluorescens. J Biochem. 1984 Apr;95(4):1047–1054. doi: 10.1093/oxfordjournals.jbchem.a134692. [DOI] [PubMed] [Google Scholar]
  14. Riddles P. W., Schnitzerling H. J., Davey P. A. Application of trans and cis isomers of p-nitrophenyl-(1R, S)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate to the assay of pyrethroid-hydrolyzing esterases. Anal Biochem. 1983 Jul 1;132(1):105–109. doi: 10.1016/0003-2697(83)90431-1. [DOI] [PubMed] [Google Scholar]
  15. Riefler J. F., 3rd, Higerd T. B. Characterization of intracellular esterase A from Bacillus subtilis. Biochim Biophys Acta. 1976 Mar 11;429(1):191–197. doi: 10.1016/0005-2744(76)90041-3. [DOI] [PubMed] [Google Scholar]
  16. Ruzo L. O., Casida J. E. Metabolism and toxicology of pyrethroids with dihalovinyl substituents. Environ Health Perspect. 1977 Dec;21:285–292. doi: 10.1289/ehp.7721285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shono T., Ohsawa K., Casida J. E. Metabolism of trans- and cis-permethrin, trans- and cis-cypermethrin, and decamethrin by microsomal enzymes. J Agric Food Chem. 1979 Mar-Apr;27(2):316–325. doi: 10.1021/jf60222a059. [DOI] [PubMed] [Google Scholar]
  18. WALLACH D. P., KO H., MARSHALL N. B. Purification and properties of a tween-hydrolyzing enzyme from rat adipose tissue. Biochim Biophys Acta. 1962 Jun 4;59:690–699. doi: 10.1016/0006-3002(62)90649-2. [DOI] [PubMed] [Google Scholar]
  19. Wallace G., Casabé N., Wood E., Zerba E. Assay of pyrethroid-hydrolysing esterases using (1,R)-cis-3-(2,2-dibromovinyl)-2,2-dimethyl cyclopropane carboxylates as substrates. Xenobiotica. 1988 Apr;18(4):351–355. doi: 10.3109/00498258809041670. [DOI] [PubMed] [Google Scholar]
  20. van Lith H. A., den Bieman M., van Zutphen B. F. Purification and molecular properties of rabbit liver esterase ES-1A. Eur J Biochem. 1989 Oct 1;184(3):545–551. doi: 10.1111/j.1432-1033.1989.tb15048.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES