Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Jul;59(7):2087–2092. doi: 10.1128/aem.59.7.2087-2092.1993

Transformation of Kluyveromyces lactis by Electroporation

Manuel Sánchez 1, Francisco J Iglesias 1, Carlos Santamaría 1, Angel Domínguez 1,*
PMCID: PMC182240  PMID: 16348986

Abstract

The physical and biological parameters involved in efficient transformation of Kluyveromyces lactis by electroporation have been analyzed. By using an optimum voltage and a constant volume of cell suspension in a cuvette, the efficiency of transformation increased with increases in cell numbers and plasmid concentration. However, the most important parameter was the time of the pulse. Changes of 1 ms decreased the efficiency of transformation more than 70 to 80%. Under our best conditions, between 106 and 107 transformants per μg of plasmid DNA could be obtained. Under certain conditions, the size of the plasmid also affected electroporation efficiency. In any case, we did not obtain integrative transformation with an autonomously replicating plasmid.

Full text

PDF
2087

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
  2. Chen X. J., Wésolowski-Louvel M., Tanguy-Rougeau C., Bianchi M. M., Fabiani L., Saliola M., Falcone C., Frontali L., Fukuhara H. A gene-cloning system for Kluyveromyces lactis and isolation of a chromosomal gene required for killer toxin production. J Basic Microbiol. 1988;28(4):211–220. doi: 10.1002/jobm.3620280402. [DOI] [PubMed] [Google Scholar]
  3. Conchas R. F., Carniel E. A highly efficient electroporation system for transformation of Yersinia. Gene. 1990 Mar 1;87(1):133–137. doi: 10.1016/0378-1119(90)90505-l. [DOI] [PubMed] [Google Scholar]
  4. Cruz-Rodz A. L., Gilmore M. S. High efficiency introduction of plasmid DNA into glycine treated Enterococcus faecalis by electroporation. Mol Gen Genet. 1990 Oct;224(1):152–154. doi: 10.1007/BF00259462. [DOI] [PubMed] [Google Scholar]
  5. Delorme E. Transformation of Saccharomyces cerevisiae by electroporation. Appl Environ Microbiol. 1989 Sep;55(9):2242–2246. doi: 10.1128/aem.55.9.2242-2246.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibson W. C., White T. C., Laird P. W., Borst P. Stable introduction of exogenous DNA into Trypanosoma brucei. EMBO J. 1987 Aug;6(8):2457–2461. doi: 10.1002/j.1460-2075.1987.tb02525.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grey M., Brendel M. A ten-minute protocol for transforming Saccharomyces cerevisiae by electroporation. Curr Genet. 1992 Oct;22(4):335–336. doi: 10.1007/BF00317931. [DOI] [PubMed] [Google Scholar]
  8. Higgins D. R., Strathern J. N. Electroporation-stimulated recombination in yeast. Yeast. 1991 Nov;7(8):823–831. doi: 10.1002/yea.320070807. [DOI] [PubMed] [Google Scholar]
  9. Hood M. T., Stachow C. Influence of Polyethylene Glycol on the Size of Schizosaccharomyces pombe Electropores. Appl Environ Microbiol. 1992 Apr;58(4):1201–1206. doi: 10.1128/aem.58.4.1201-1206.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hood M. T., Stachow C. Transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res. 1990 Feb 11;18(3):688–688. doi: 10.1093/nar/18.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kasüske A., Wedler H., Schulze S., Becher D. Efficient electropulse transformation of intact Candida maltosa cells by different homologous vector plasmids. Yeast. 1992 Sep;8(9):691–697. doi: 10.1002/yea.320080902. [DOI] [PubMed] [Google Scholar]
  13. Mateos P., Domínguez A. Ultrastructure and cell wall composition in cell division cycle mutants of Schizosaccharomyces pombe deficient in septum formation. Antonie Van Leeuwenhoek. 1991 Apr;59(3):155–165. doi: 10.1007/BF00580655. [DOI] [PubMed] [Google Scholar]
  14. Meilhoc E., Masson J. M., Teissié J. High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology (N Y) 1990 Mar;8(3):223–227. doi: 10.1038/nbt0390-223. [DOI] [PubMed] [Google Scholar]
  15. Pfau J., Youderian P. Transferring plasmid DNA between different bacterial species with electroporation. Nucleic Acids Res. 1990 Oct 25;18(20):6165–6165. doi: 10.1093/nar/18.20.6165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rose M. D., Novick P., Thomas J. H., Botstein D., Fink G. R. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 1987;60(2-3):237–243. doi: 10.1016/0378-1119(87)90232-0. [DOI] [PubMed] [Google Scholar]
  17. Weaver J. C., Harrison G. I., Bliss J. G., Mourant J. R., Powell K. T. Electroporation: high frequency of occurrence of a transient high-permeability state in erythrocytes and intact yeast. FEBS Lett. 1988 Feb 29;229(1):30–34. doi: 10.1016/0014-5793(88)80791-9. [DOI] [PubMed] [Google Scholar]
  18. Wirth R., Friesenegger A., Fiedler S. Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet. 1989 Mar;216(1):175–177. doi: 10.1007/BF00332248. [DOI] [PubMed] [Google Scholar]
  19. Xie T. D., Sun L., Zhao H. G., Fuchs J. A., Tsong T. Y. Study of mechanisms of electric field-induced DNA transfection. IV. Effects of DNA topology on cell uptake and transfection efficiency. Biophys J. 1992 Oct;63(4):1026–1031. doi: 10.1016/S0006-3495(92)81675-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES