Abstract
Rhizobium tropici CIAT899 induced chlorosis in the leaves of its symbiotic hosts, common bean (Phaseolus vulgaris L.), siratro (Macroptilium atropurpureum Urb.), and Leucaena leucocephala (Lam.) de Wit. Chlorosis induction by strains CIAT899 and CT9005, an exopolysaccharide-deficient mutant of CIAT899, required carbon substrate. When the bacteria were added at planting in a solution of mannitol (50 g/liter), as few as 103 cells of CIAT899 were sufficient to induce chlorosis in bean plants. All carbon sources tested, including organic acids and mono- and disaccharides, supported chlorosis induction. The addition of a carbon source did not affect the growth rate or the population density of CT9005 in the bean plant rhizosphere. Cell-free filtrates of cultures of CT9005 did not induce detectable chlorosis. All type B strains of R. tropici tested also induced chlorosis in common bean. Type A strains of R. tropici and all other species of bacteria tested did not induce chlorosis. Several lines of evidence indicated that nodulation was not required for chlorosis induction. Strain RSP900, a pSym-cured derivative of CIAT899, induced chlorosis in wild-type P. vulgaris. In addition, NOD125, a nodulation-defective line of common bean, developed chlorosis when inoculated with CIAT899, but did not develop nodules. CIAT899 consistently induced severe chlorosis in the leaves of the nonhost legumes alfalfa (Medicago sativa L.) and Berseem clover (Trifolium alexandrinum L.), and induced chlorosis in 29 to 58% of the plants tested of sunflower, cucumber, and tomato seedlings, but it did not induce chlorosis in the leaves of corn or wheat. Chlorosis induction in nonhost plants also required carbon substrate. The data are consistent with the hypothesis that R. tropici type B strains produce a chlorosis-inducing factor that affects a wide range of plant species.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Araujo R. S., Maya-Flores J., Barnes-McConnell D., Yokoyama C., Dazzo F. B., Bliss F. A. Semienclosed Tube Cultures of Bean Plants (Phaseolus vulgaris L.) for Enumeration of Rhizobium phaseoli by the Most-Probable-Number Technique. Appl Environ Microbiol. 1986 Oct;52(4):954–956. doi: 10.1128/aem.52.4.954-956.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beattie G. A., Clayton M. K., Handelsman J. Quantitative comparison of the laboratory and field competitiveness of Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol. 1989 Nov;55(11):2755–2761. doi: 10.1128/aem.55.11.2755-2761.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brom S., Martinez E., Dávila G., Palacios R. Narrow- and Broad-Host-Range Symbiotic Plasmids of Rhizobium spp. Strains That Nodulate Phaseolus vulgaris. Appl Environ Microbiol. 1988 May;54(5):1280–1283. doi: 10.1128/aem.54.5.1280-1283.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Györgypal Z., Kiss G. B., Kondorosi A. Transduction of plant signal molecules by the Rhizobium NodD proteins. Bioessays. 1991 Nov;13(11):575–581. doi: 10.1002/bies.950131106. [DOI] [PubMed] [Google Scholar]
- Kingsley M. T., Bohlool B. B. Extracellular Polysaccharide Is Not Responsible for Aluminum Tolerance of Rhizobium leguminosarum bv. Phaseoli CIAT899. Appl Environ Microbiol. 1992 Apr;58(4):1095–1101. doi: 10.1128/aem.58.4.1095-1101.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol. 1991 Jul;41(3):417–426. doi: 10.1099/00207713-41-3-417. [DOI] [PubMed] [Google Scholar]
- Milner J. L., Araujo R. S., Handelsman J. Molecular and symbiotic characterization of exopolysaccharide-deficient mutants of Rhizobium tropici strain CIAT899. Mol Microbiol. 1992 Nov;6(21):3137–3147. doi: 10.1111/j.1365-2958.1992.tb01770.x. [DOI] [PubMed] [Google Scholar]
- Noel K. D., Sanchez A., Fernandez L., Leemans J., Cevallos M. A. Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol. 1984 Apr;158(1):148–155. doi: 10.1128/jb.158.1.148-155.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruan X., Peters N. K. Rapid and sensitive assay for the phytotoxin rhizobitoxine. Appl Environ Microbiol. 1991 Jul;57(7):2097–2100. doi: 10.1128/aem.57.7.2097-2100.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vargas C., Martinez L. J., Megias M., Quinto C. Identification and cloning of nodulation genes and host specificity determinants of the broad host-range Rhizobium leguminosarum biovar phaseoli strain CIAT899. Mol Microbiol. 1990 Nov;4(11):1899–1910. doi: 10.1111/j.1365-2958.1990.tb02039.x. [DOI] [PubMed] [Google Scholar]
- Watson B., Currier T. C., Gordon M. P., Chilton M. D., Nester E. W. Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol. 1975 Jul;123(1):255–264. doi: 10.1128/jb.123.1.255-264.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
