Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Jul;59(7):2329–2331. doi: 10.1128/aem.59.7.2329-2331.1993

Glutamate Dehydrogenase Is Not Essential for Glutamate Formation by Corynebacterium glutamicum

Elke R Börmann-El Kholy 1, Bernhard J Eikmanns 1,*, Marcella Gutmann 1, Hermann Sahm 1
PMCID: PMC182279  PMID: 16349003

Abstract

Two Corynebacterium glutamicum strains, one being glutamate dehydrogenase (GDH) negative and the other possessing 11-fold-higher specific GDH activity than the parental wild type, were constructed and used to analyze the role of GDH in C. glutamicum. The results indicate (i) that GDH is dispensable for glutamate synthesis required for growth and (ii) that although a high level of GDH increases the intracellular glutamate pool, the level of GDH has no influence on glutamate secretion.

Full text

PDF
2329

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Börmann E. R., Eikmanns B. J., Sahm H. Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol. 1992 Feb;6(3):317–326. doi: 10.1111/j.1365-2958.1992.tb01474.x. [DOI] [PubMed] [Google Scholar]
  2. Eikmanns B. J., Kleinertz E., Liebl W., Sahm H. A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene. 1991 Jun 15;102(1):93–98. doi: 10.1016/0378-1119(91)90545-m. [DOI] [PubMed] [Google Scholar]
  3. Eikmanns B. J., Metzger M., Reinscheid D., Kircher M., Sahm H. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol. 1991 Feb;34(5):617–622. doi: 10.1007/BF00167910. [DOI] [PubMed] [Google Scholar]
  4. Ertan H. Some properties of glutamate dehydrogenase, glutamine synthetase and glutamate synthase from Corynebacterium callunae. Arch Microbiol. 1992;158(1):35–41. doi: 10.1007/BF00249063. [DOI] [PubMed] [Google Scholar]
  5. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  6. Meers J. L., Tempest D. W., Brown C. M. 'Glutamine(amide):2-oxoglutarate amino transferase oxido-reductase (NADP); an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol. 1970 Dec;64(2):187–194. doi: 10.1099/00221287-64-2-187. [DOI] [PubMed] [Google Scholar]
  7. SHIIO I., OTSUKA S. I., TAKAHASHI M. Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular premeability of amino acids. J Biochem. 1962 Jan;51:56–62. doi: 10.1093/oxfordjournals.jbchem.a127500. [DOI] [PubMed] [Google Scholar]
  8. Schwarzer A., Pühler A. Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology (N Y) 1991 Jan;9(1):84–87. doi: 10.1038/nbt0191-84. [DOI] [PubMed] [Google Scholar]
  9. Schäfer A., Kalinowski J., Simon R., Seep-Feldhaus A. H., Pühler A. High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol. 1990 Mar;172(3):1663–1666. doi: 10.1128/jb.172.3.1663-1666.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shiio I., Ujigawa K. Enzymes of the glutamate and aspartate synthetic pathways in a glutamate-producing bacterium, Brevibacterium flavum. J Biochem. 1978 Sep;84(3):647–657. doi: 10.1093/oxfordjournals.jbchem.a132170. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES