Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Aug;59(8):2359–2363. doi: 10.1128/aem.59.8.2359-2363.1993

Analysis of Tox5 gene expression in Gibberella pulicaris strains with different trichothecene production phenotypes.

T M Hohn 1, A E Desjardins 1, S P McCormick 1
PMCID: PMC182291  PMID: 8368827

Abstract

The Tox5 gene encodes trichodiene synthase, the first unique enzyme in the trichothecene biosynthetic pathway. In Gibberella pulicaris R-6380, the level of Tox5 mRNA was found to increase 47-fold in early stationary phase. Sequence analysis of the Tox5 promoter regions from geographically distinct strains of G. pulicaris revealed the existence of two Tox5 alleles (Tox5-1 and Tox5-2). All G. pulicaris strains that produce high levels of trichothecenes in liquid culture carry a 42-nucleotide (nt) tandem repeat sequence (Tox5-1) in the Tox5 promoter region, whereas strains that produce low levels of trichothecenes carry a single copy of this sequence (Tox5-2). A genetic cross between high- and low-level trichothecene producers resulted in the cosegregation of higher-level trichothecene production with the Tox5-1 allele. To determine the importance of the 42-nt repeat sequence in the regulation of Tox5 expression, reporter gene constructs carrying either the Tox5-1 or the Tox5-2 promoter region fused to the beta-galactosidase gene of Escherichia coli were introduced into the high-level-trichothecene-producing strain, R-6380. Expression of reporter gene activity in transformants was found to be regulated in a manner similar to Tox5 expression but appeared to be independent of the 42-nt sequence copy number. These results indicate that transcriptional controls play an important role in the regulation of Tox5 expression and that genes involved in trichothecene biosynthesis in G. pulicaris may be linked to Tox5.

Full text

PDF
2359

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Gardner E. Construction & architects survey. Mod Healthc. 1989 Feb 24;19(8):23-6, 30-4, 39-58. [PubMed] [Google Scholar]
  3. Hohn T. M., Beremand M. N. Regulation of Trichodiene Synthase in Fusarium sporotrichioides and Gibberella pulicaris (Fusarium sambucinum). Appl Environ Microbiol. 1989 Jun;55(6):1500–1503. doi: 10.1128/aem.55.6.1500-1503.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hohn T. M., Beremand P. D. Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene. 1989 Jun 30;79(1):131–138. doi: 10.1016/0378-1119(89)90098-x. [DOI] [PubMed] [Google Scholar]
  5. Hohn T. M., Desjardins A. E. Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris. Mol Plant Microbe Interact. 1992 May-Jun;5(3):249–256. doi: 10.1094/mpmi-5-249. [DOI] [PubMed] [Google Scholar]
  6. Hohn T. M., Vanmiddlesworth F. Purification and characterization of the sesquiterpene cyclase trichodiene synthetase from Fusarium sporotrichioides. Arch Biochem Biophys. 1986 Dec;251(2):756–761. doi: 10.1016/0003-9861(86)90386-3. [DOI] [PubMed] [Google Scholar]
  7. Kaltenboeck B., Spatafora J. W., Zhang X., Kousoulas K. G., Blackwell M., Storz J. Efficient production of single-stranded DNA as long as 2 kb for sequencing of PCR-amplified DNA. Biotechniques. 1992 Feb;12(2):164, 166, 168-71. [PubMed] [Google Scholar]
  8. Kinsey J. A., Rambosek J. A. Transformation of Neurospora crassa with the cloned am (glutamate dehydrogenase) gene. Mol Cell Biol. 1984 Jan;4(1):117–122. doi: 10.1128/mcb.4.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McCormick S. P., Taylor S. L., Plattner R. D., Beremand M. N. Bioconversion of possible T-2 toxin precursors by a mutant strain of Fusarium sporotrichioides NRRL 3299. Appl Environ Microbiol. 1990 Mar;56(3):702–706. doi: 10.1128/aem.56.3.702-706.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mellon F. M., Casselton L. A. Transformation as a method of increasing gene copy number and gene expression in the basidiomycete fungus Coprinus cinereus. Curr Genet. 1988 Nov;14(5):451–456. doi: 10.1007/BF00521268. [DOI] [PubMed] [Google Scholar]
  11. O'Donnell K. Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr Genet. 1992 Sep;22(3):213–220. doi: 10.1007/BF00351728. [DOI] [PubMed] [Google Scholar]
  12. Proctor R. H., Hohn T. M. Aristolochene synthase. Isolation, characterization, and bacterial expression of a sesquiterpenoid biosynthetic gene (Ari1) from Penicillium roqueforti. J Biol Chem. 1993 Feb 25;268(6):4543–4548. [PubMed] [Google Scholar]
  13. Salch Y. P., Beremand M. N. Gibberella pulicaris transformants: state of transforming DNA during asexual and sexual growth. Curr Genet. 1993;23(4):343–350. doi: 10.1007/BF00310897. [DOI] [PubMed] [Google Scholar]
  14. Turgeon B. G., Garber R. C., Yoder O. C. Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol. 1987 Sep;7(9):3297–3305. doi: 10.1128/mcb.7.9.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. van Gorcom R. F., Pouwels P. H., Goosen T., Visser J., van den Broek H. W., Hamer J. E., Timberlake W. E., van den Hondel C. A. Expression of an Escherichia coli beta-galactosidase fusion gene in Aspergillus nidulans. Gene. 1985;40(1):99–106. doi: 10.1016/0378-1119(85)90028-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES