Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Sep;59(9):2891–2896. doi: 10.1128/aem.59.9.2891-2896.1993

Application of a Tetrazolium Salt with a Water-Soluble Formazan as an Indicator of Viability in Respiring Bacteria

Peter Roslev 1, Gary M King 1,*
PMCID: PMC182382  PMID: 16349038

Abstract

The tetrazolium salt sodium 3′-{1-[(phenylamino)-carbonyl]-3,4-tetrazolium}-bis (4-methoxy-6-nitro)benzene-sulfonic acid hydrate (XTT) was examined for use as a colorimetric indicator of viability in respiring bacteria. XTT was reduced to an orange, water-soluble formazan product by Methylosinus trichosporium OB3b, Pseudomonas putida, Escherichia coli, and Bacillus subtilis. Formazan production was proportional to live cell biomass, and XTT was reduced by all cultures in the absence of added electron-coupling agents. XTT reduction by M. trichosporium OB3b was linear over several hours and was stimulated by the presence of an exogenous substrate (methanol). Addition of cyanide to cultures incubated under oxic conditions gave an initial 10-fold increase in XTT reduction. Viability of bacteria incubated in the absence of exogenous carbon substrates was measured as XTT reduction and compared with viability estimates from plate counts. Results obtained with the two methods were generally comparable, but the XTT assay was superior when cell recovery on plates was low. Incubation of E. coli for 7 days in the absence of exogenous carbon substrates decreased viability by 90%, whereas the corresponding decreases for cultures of M. trichosporium OB3b, P. putida, and B. subtilis were less than 40%.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman F. P. Tetrazolium salts and formazans. Prog Histochem Cytochem. 1976;9(3):1–56. doi: 10.1016/s0079-6336(76)80015-0. [DOI] [PubMed] [Google Scholar]
  2. Anthony C. Bacterial oxidation of methane and methanol. Adv Microb Physiol. 1986;27:113–210. doi: 10.1016/s0065-2911(08)60305-7. [DOI] [PubMed] [Google Scholar]
  3. Comley J. C., Turner C. H. Potential of a soluble tetrazolium/formazan assay for the evaluation of filarial viability. Int J Parasitol. 1990 Apr;20(2):251–255. doi: 10.1016/0020-7519(90)90107-x. [DOI] [PubMed] [Google Scholar]
  4. Dawes E. A. Stress of unbalanced growth and starvation in micro-organisms. Soc Appl Bacteriol Symp Ser. 1984;(12):19–43. [PubMed] [Google Scholar]
  5. Kjelleberg S., Hermansson M., Mårdén P., Jones G. W. The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol. 1987;41:25–49. doi: 10.1146/annurev.mi.41.100187.000325. [DOI] [PubMed] [Google Scholar]
  6. Koch A. L. The adaptive responses of Escherichia coli to a feast and famine existence. Adv Microb Physiol. 1971;6:147–217. doi: 10.1016/s0065-2911(08)60069-7. [DOI] [PubMed] [Google Scholar]
  7. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  8. Oliver J. D., Nilsson L., Kjelleberg S. Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl Environ Microbiol. 1991 Sep;57(9):2640–2644. doi: 10.1128/aem.57.9.2640-2644.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rodriguez G. G., Phipps D., Ishiguro K., Ridgway H. F. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol. 1992 Jun;58(6):1801–1808. doi: 10.1128/aem.58.6.1801-1808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Roehm N. W., Rodgers G. H., Hatfield S. M., Glasebrook A. L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 1991 Sep 13;142(2):257–265. doi: 10.1016/0022-1759(91)90114-u. [DOI] [PubMed] [Google Scholar]
  11. Roszak D. B., Colwell R. R. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. doi: 10.1128/mr.51.3.365-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Scudiero D. A., Shoemaker R. H., Paull K. D., Monks A., Tierney S., Nofziger T. H., Currens M. J., Seniff D., Boyd M. R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988 Sep 1;48(17):4827–4833. [PubMed] [Google Scholar]
  13. Stevens M. G., Olsen S. C. Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity. J Immunol Methods. 1993 Jan 4;157(1-2):225–231. doi: 10.1016/0022-1759(93)90091-k. [DOI] [PubMed] [Google Scholar]
  14. Tellier R., Krajden M., Grigoriew G. A., Campbell I. Innovative endpoint determination system for antifungal susceptibility testing of yeasts. Antimicrob Agents Chemother. 1992 Aug;36(8):1619–1625. doi: 10.1128/aac.36.8.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Trevors J. T. Electron transport system activity in soil, sediment, and pure cultures. Crit Rev Microbiol. 1984;11(2):83–100. doi: 10.3109/10408418409105473. [DOI] [PubMed] [Google Scholar]
  16. Vistica D. T., Skehan P., Scudiero D., Monks A., Pittman A., Boyd M. R. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 1991 May 15;51(10):2515–2520. [PubMed] [Google Scholar]
  17. Zimmermann R., Iturriaga R., Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 1978 Dec;36(6):926–935. doi: 10.1128/aem.36.6.926-935.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES