Abstract
The polymerase chain reaction (PCR) was used as the basis for the development of highly sensitive and specific diagnostic tests for organisms harboring botulinum neurotoxin type A through E genes. Synthetic DNA primers were selected from nucleic acid sequence data for Clostridium botulinum neurotoxins. Individual components of the PCR for each serotype (serotypes A through E) were adjusted for optimal amplification of the target fragment. Each PCR assay was tested with organisms expressing each of the botulinum neurotoxin types (types A through G), Clostridium tetani, genetically related nontoxigenic organisms, and unrelated strains. Each assay was specific for the intended target. The PCR reliably identified multiple strains having the same neurotoxin type. The sensitivity of the test was determined with different concentrations of genomic DNA from strains producing each toxin type. As little as 10 fg of DNA (approximately three clostridial cells) was detected. C. botulinum neurotoxin types A, B, and E, which are most commonly associated with human botulism, could be amplified from crude DNA extracts, from vegetative cells, and from spore preparations. This suggests that there is great potential for the PCR in the identification and detection of botulinum neurotoxin-producing strains.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashton A. C., Crowther J. S., Dolly J. O. A sensitive and useful radioimmunoassay for neurotoxin and its haemagglutinin complex from Clostridium botulinum. Toxicon. 1985;23(2):235–246. doi: 10.1016/0041-0101(85)90146-1. [DOI] [PubMed] [Google Scholar]
- Binz T., Kurazono H., Popoff M. R., Eklund M. W., Sakaguchi G., Kozaki S., Krieglstein K., Henschen A., Gill D. M., Niemann H. Nucleotide sequence of the gene encoding Clostridium botulinum neurotoxin type D. Nucleic Acids Res. 1990 Sep 25;18(18):5556–5556. doi: 10.1093/nar/18.18.5556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binz T., Kurazono H., Wille M., Frevert J., Wernars K., Niemann H. The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. J Biol Chem. 1990 Jun 5;265(16):9153–9158. [PubMed] [Google Scholar]
- Durban E., Durban E. M., Grecz N. Production of spore spheroplasts of Clostridium botulinum and DNA extraction for density gradient centrifugation. Can J Microbiol. 1974 Mar;20(3):353–358. doi: 10.1139/m74-054. [DOI] [PubMed] [Google Scholar]
- Fujii N., Kimura K., Murakami T., Indoh T., Yashiki T., Tsuzuki K., Yokosawa N., Oguma K. The nucleotide and deduced amino acid sequences of EcoRI fragment containing the 5'-terminal region of Clostridium botulinum type E toxin gene cloned from Mashike, Iwanai and Otaru strains. Microbiol Immunol. 1990;34(12):1041–1047. doi: 10.1111/j.1348-0421.1990.tb01525.x. [DOI] [PubMed] [Google Scholar]
- Gibson A. M., Modi N. K., Roberts T. A., Shone C. C., Hambleton P., Melling J. Evaluation of a monoclonal antibody-based immunoassay for detecting type A Clostridium botulinum toxin produced in pure culture and an inoculated model cured meat system. J Appl Bacteriol. 1987 Sep;63(3):217–226. doi: 10.1111/j.1365-2672.1987.tb04939.x. [DOI] [PubMed] [Google Scholar]
- Giménez D. F., Ciccarelli A. S. Another type of Clostridium botulinum. Zentralbl Bakteriol Orig. 1970;215(2):221–224. [PubMed] [Google Scholar]
- Hauser D., Eklund M. W., Kurazono H., Binz T., Niemann H., Gill D. M., Boquet P., Popoff M. R. Nucleotide sequence of Clostridium botulinum C1 neurotoxin. Nucleic Acids Res. 1990 Aug 25;18(16):4924–4924. doi: 10.1093/nar/18.16.4924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. L., Francis B. S. Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol. 1975 Jun;88(2):229–244. doi: 10.1099/00221287-88-2-229. [DOI] [PubMed] [Google Scholar]
- Lampel K. A., Jagow J. A., Trucksess M., Hill W. E. Polymerase chain reaction for detection of invasive Shigella flexneri in food. Appl Environ Microbiol. 1990 Jun;56(6):1536–1540. doi: 10.1128/aem.56.6.1536-1540.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee W. H., Riemann H. Correlation of toxic and non-toxic strains of Clostridium botulinum by DNA composition and homology. J Gen Microbiol. 1970 Jan;60(1):117–123. doi: 10.1099/00221287-60-1-117. [DOI] [PubMed] [Google Scholar]
- Lo Y. M., Mehal W. Z., Fleming K. A. Rapid production of vector-free biotinylated probes using the polymerase chain reaction. Nucleic Acids Res. 1988 Sep 12;16(17):8719–8719. doi: 10.1093/nar/16.17.8719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller C. A., Anderson A. W. Rapid detection and quantitative estimation of type A botulinum toxin by electroimmunodiffusion. Infect Immun. 1971 Aug;4(2):126–129. doi: 10.1128/iai.4.2.126-129.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samadpour M., Liston J., Ongerth J. E., Tarr P. I. Evaluation of DNA probes for detection of Shiga-like-toxin-producing Escherichia coli in food and calf fecal samples. Appl Environ Microbiol. 1990 May;56(5):1212–1215. doi: 10.1128/aem.56.5.1212-1215.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schantz E. J., Johnson E. A. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev. 1992 Mar;56(1):80–99. doi: 10.1128/mr.56.1.80-99.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson L. L. Molecular pharmacology of botulinum toxin and tetanus toxin. Annu Rev Pharmacol Toxicol. 1986;26:427–453. doi: 10.1146/annurev.pa.26.040186.002235. [DOI] [PubMed] [Google Scholar]
- Sonnabend O., Sonnabend W., Heinzle R., Sigrist T., Dirnhofer R., Krech U. Isolation of Clostridium botulinum type G and identification of type G botulinal toxin in humans: report of five sudden unexpected deaths. J Infect Dis. 1981 Jan;143(1):22–27. doi: 10.1093/infdis/143.1.22. [DOI] [PubMed] [Google Scholar]
- Strom M. S., Eklund M. W., Poysky F. T. Plasmids in Clostridium botulinum and related Clostridium species. Appl Environ Microbiol. 1984 Nov;48(5):956–963. doi: 10.1128/aem.48.5.956-963.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szabo E. A., Pemberton J. M., Desmarchelier P. M. Specific detection of Clostridium botulinum type B by using the polymerase chain reaction. Appl Environ Microbiol. 1992 Jan;58(1):418–420. doi: 10.1128/aem.58.1.418-420.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas R. J. Detection of Clostridium botulinum types C and D toxin by ELISA. Aust Vet J. 1991 Mar;68(3):111–113. doi: 10.1111/j.1751-0813.1991.tb00769.x. [DOI] [PubMed] [Google Scholar]
- Thompson D. E., Brehm J. K., Oultram J. D., Swinfield T. J., Shone C. C., Atkinson T., Melling J., Minton N. P. The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene. Eur J Biochem. 1990 Apr 20;189(1):73–81. doi: 10.1111/j.1432-1033.1990.tb15461.x. [DOI] [PubMed] [Google Scholar]
- Vary P. H., Andersen P. R., Green E., Hermon-Taylor J., McFadden J. J. Use of highly specific DNA probes and the polymerase chain reaction to detect Mycobacterium paratuberculosis in Johne's disease. J Clin Microbiol. 1990 May;28(5):933–937. doi: 10.1128/jcm.28.5.933-937.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whelan S. M., Elmore M. J., Bodsworth N. J., Brehm J. K., Atkinson T., Minton N. P. Molecular cloning of the Clostridium botulinum structural gene encoding the type B neurotoxin and determination of its entire nucleotide sequence. Appl Environ Microbiol. 1992 Aug;58(8):2345–2354. doi: 10.1128/aem.58.8.2345-2354.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J. I., Riemann H., Lee W. H. Thermal stability of the deoxyribonucleic acid hybrids between the proteolytic strains of Clostridium botulinum and Clostridium sporogenes. Can J Microbiol. 1972 Jan;18(1):97–99. doi: 10.1139/m72-016. [DOI] [PubMed] [Google Scholar]