Abstract
Mixed ruminal bacteria, isolated from sheep (Q and W) fed a concentrate and hay diet, were anaerobically incubated with either 14C-peptides or 14C-amino acids. Experiment 1 showed that uptake of both 14C-labeled substrates was rapid, but the rate for amino acids was twofold greater than for peptides (molecular weight, 1,000 to 200) initially but was similar after 10 min. Experiment 2 demonstrated that metabolism was also rapid; at least 90% of either 14C-labeled substrate was metabolized by 3 min. Of the radioactivity remaining in bacteria, approximately 30% was in the form of 14C-amino acids, but only in leucine, tyrosine, and phenylalanine. Supernatant radioactivity was contained only in tyrosine, phenylalanine, and mostly proline for incubations with 14C-amino acids but in up to 10 amino acids when 14C-peptides were the substrates. Short-term incubations (< 5 min; experiment 3) confirmed previous uptake patterns and showed that the experimental system was responsive to substrate competition. Experiment 4 demonstrated that bacteria from sheep Q possessed initial and maximum rates of 14C-amino acid uptake approximately fourfold greater (P < 0.01) than those of 14C-peptides, but with no significant differences (P > 0.1) between four 14C-peptide substrate groups with molecular weights of 2,000 to < 200. By contrast, bacteria from sheep W showed no such distinctions (P > 0.1) between rates for 14C-peptides and 14C-amino acids. Calculations suggested that peptides could supply from 11 to 35% and amino acids could supply from 36 to 68% of the N requirements of mixed ruminal bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argyle J. L., Baldwin R. L. Effects of amino acids and peptides on rumen microbial growth yields. J Dairy Sci. 1989 Aug;72(8):2017–2027. doi: 10.3168/jds.S0022-0302(89)79325-5. [DOI] [PubMed] [Google Scholar]
- Armstead I. P., Ling J. R. Chromatographic separation of mixed peptides from amino acids in biological digests with volatile buffers. J Chromatogr. 1991 Nov 22;586(2):259–263. doi: 10.1016/0021-9673(91)85130-8. [DOI] [PubMed] [Google Scholar]
- Bladen H. A., Bryant M. P., Doetsch R. N. A Study of Bacterial Species from the Rumen Which Produce Ammonia from Protein Hydrolyzate. Appl Microbiol. 1961 Mar;9(2):175–180. doi: 10.1128/am.9.2.175-180.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalupa W. Degradation of amino acids by the mixed rumen microbial population. J Anim Sci. 1976 Oct;43(4):828–834. doi: 10.2527/jas1976.434828x. [DOI] [PubMed] [Google Scholar]
- Chen G. J., Russell J. B. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus. Appl Environ Microbiol. 1988 Nov;54(11):2742–2749. doi: 10.1128/aem.54.11.2742-2749.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen G., Russell J. B. More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol. 1989 May;55(5):1052–1057. doi: 10.1128/aem.55.5.1052-1057.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen G., Russell J. B., Sniffen C. J. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J Dairy Sci. 1987 Jun;70(6):1211–1219. doi: 10.3168/jds.S0022-0302(87)80133-9. [DOI] [PubMed] [Google Scholar]
- Chen G., Sniffen C. J., Russell J. B. Concentration and estimated flow of peptides from the rumen of dairy cattle: effects of protein quantity, protein solubility, and feeding frequency. J Dairy Sci. 1987 May;70(5):983–992. doi: 10.3168/jds.S0022-0302(87)80103-0. [DOI] [PubMed] [Google Scholar]
- Chen G., Strobel H. J., Russell J. B., Sniffen C. J. Effect of hydrophobicity of utilization of peptides by ruminal bacteria in vitro. Appl Environ Microbiol. 1987 Sep;53(9):2021–2025. doi: 10.1128/aem.53.9.2021-2025.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Ling J. R., Buttery P. J. The simultaneous use of ribonucleic acid, 35S, 2,6-diaminopimelic acid and 2-aminoethylphosphonic acid as markers of microbial nitrogen entering the duodenum of sheep. Br J Nutr. 1978 Jan;39(1):165–179. doi: 10.1079/bjn19780023. [DOI] [PubMed] [Google Scholar]
- Nolan J. V., Norton B. W., Leng R. A. Further studies of the dynamics of nitrogen metabolism in sheep. Br J Nutr. 1976 Jan;35(1):127–147. doi: 10.1079/bjn19760016. [DOI] [PubMed] [Google Scholar]
- Nugent J. H., Mangan J. L. Characteristics of the rumen proteolysis of fraction I (18S) leaf protein from lucerne (Medicago sativa L). Br J Nutr. 1981 Jul;46(1):39–58. doi: 10.1079/bjn19810007. [DOI] [PubMed] [Google Scholar]
- PITTMAN K. A., BRYANT M. P. PEPTIDES AND OTHER NITROGEN SOURCES FOR GROWTH OF BACTEROIDES RUMINICOLA. J Bacteriol. 1964 Aug;88:401–410. doi: 10.1128/jb.88.2.401-410.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pittman K. A., Lakshmanan S., Bryant M. P. Oligopeptide uptake by Bacteroides ruminicola. J Bacteriol. 1967 May;93(5):1499–1508. doi: 10.1128/jb.93.5.1499-1508.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prins R. A., van Hal-Van Gestel J. C., Counotte G. H. Degradation of amino acids and peptides by mixed rumen micro-organisms. Z Tierphysiol Tierernahr Futtermittelkd. 1979 Dec;42(6):333–339. doi: 10.1111/j.1439-0396.1979.tb01226.x. [DOI] [PubMed] [Google Scholar]
- Russell J. B., O'Connor J. D., Fox D. G., Van Soest P. J., Sniffen C. J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J Anim Sci. 1992 Nov;70(11):3551–3561. doi: 10.2527/1992.70113551x. [DOI] [PubMed] [Google Scholar]
- Scheifinger C., Russell N., Chalupa W. Degradation of amino acids by pure cultures of rumen bacteria. J Anim Sci. 1976 Oct;43(4):821–827. doi: 10.2527/jas1976.434821x. [DOI] [PubMed] [Google Scholar]
- Stevenson R. M. Amino acid uptake systems in Bacteroides ruminicola. Can J Microbiol. 1979 Oct;25(10):1161–1168. doi: 10.1139/m79-180. [DOI] [PubMed] [Google Scholar]
- Wallace R. J. Acetylation of peptides inhibits their degradation by rumen micro-organisms. Br J Nutr. 1992 Sep;68(2):365–372. doi: 10.1079/bjn19920095. [DOI] [PubMed] [Google Scholar]
- Wallace R. J., McKain N. A survey of peptidase activity in rumen bacteria. J Gen Microbiol. 1991 Sep;137(9):2259–2264. doi: 10.1099/00221287-137-9-2259. [DOI] [PubMed] [Google Scholar]
- Wallace R. J., McKain N. Analysis of peptide metabolism by ruminal microorganisms. Appl Environ Microbiol. 1989 Sep;55(9):2372–2376. doi: 10.1128/aem.55.9.2372-2376.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb K. E., Jr, Dirienzo D. B., Matthews J. C. Recent developments in gastrointestinal absorption and tissue utilization of peptides: a review. J Dairy Sci. 1993 Jan;76(1):351–361. doi: 10.3168/jds.S0022-0302(93)77355-5. [DOI] [PubMed] [Google Scholar]
- Westlake K., Mackie R. I. Peptide and amino acid transport in Streptococcus bovis. Appl Microbiol Biotechnol. 1990 Oct;34(1):97–102. doi: 10.1007/BF00170931. [DOI] [PubMed] [Google Scholar]
- Wright D. E. Metabolism of peptides by rumen microorganisms. Appl Microbiol. 1967 May;15(3):547–550. doi: 10.1128/am.15.3.547-550.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang C. M., Russell J. B. Resistance of proline-containing peptides to ruminal degradation in vitro. Appl Environ Microbiol. 1992 Dec;58(12):3954–3958. doi: 10.1128/aem.58.12.3954-3958.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]