Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Nov;59(11):3669–3673. doi: 10.1128/aem.59.11.3669-3673.1993

Molecular cloning and expression of two alpha-amylase genes from Streptococcus bovis 148 in Escherichia coli.

E Satoh 1, Y Niimura 1, T Uchimura 1, M Kozaki 1, K Komagata 1
PMCID: PMC182515  PMID: 8285674

Abstract

The alpha-amylase genes of Streptococcus bovis 148 were cloned in Escherichia coli MC1061, using pBR322. The recombinant plasmids were classified into two groups on the basis of their restriction maps. Southern blot analysis did not show homology between the two types of alpha-amylase genes, and the two alpha-amylase genes existed on the chromosomal DNA of S. bovis 148. The enzymatic properties and N-terminal amino acid sequences of the two purified enzymes produced by the cloned E. coli strains were quite different from each other. Particularly, one alpha-amylase (Amy I) was adsorbed on raw corn starch and hydrolyzed raw corn starch, and another (Amy II) was not adsorbed on raw corn starch and did not hydrolyze raw corn starch. Amy I was considered to be the same as the extracellular alpha-amylase of S. bovis 148 in raw starch absorbability, ability to hydrolyze raw corn starch, enzymatic characteristics, N-terminal amino acid sequence, and mode of action on soluble starch. Amy II showed a unique pattern of oligosaccharide production from soluble starch compared with the extracellular alpha-amylase of S. bovis 148. Amy II was suggested to be an intracellular alpha-amylase of S. bovis 148.

Full text

PDF
3669

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen C. W., Thomas C. A., Jr Recovery of DNA segments from agarose gels. Anal Biochem. 1980 Jan 15;101(2):339–341. doi: 10.1016/0003-2697(80)90197-9. [DOI] [PubMed] [Google Scholar]
  2. Clark R. G., Hu Y. J., Hynes M. F., Salmon R. K., Cheng K. J. Cloning and expression of an amylase gene from Streptococcus bovis in Escherichia coli. Arch Microbiol. 1992;157(3):201–204. doi: 10.1007/BF00245149. [DOI] [PubMed] [Google Scholar]
  3. Cornelis P., Digneffe C., Willemot K. Cloning and expression of a Bacillus coagulans amylase gene in Escherichia coli. Mol Gen Genet. 1982;186(4):507–511. doi: 10.1007/BF00337957. [DOI] [PubMed] [Google Scholar]
  4. Cotta M. A., Whitehead T. R. Regulation and cloning of the gene encoding amylase activity of the ruminal bacterium Streptococcus bovis. Appl Environ Microbiol. 1993 Jan;59(1):189–196. doi: 10.1128/aem.59.1.189-196.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HOBSON P. N., MACPHERSON M. Amylases of Clostridium butyricum and a Streptococcus isolated from the rumen of the sheep. Biochem J. 1952 Dec;52(4):671–679. doi: 10.1042/bj0520671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol. 1991 Mar;5(3):575–584. doi: 10.1111/j.1365-2958.1991.tb00728.x. [DOI] [PubMed] [Google Scholar]
  7. Kainuma K., French D. Action of pancreatic amylase on starch oligosaccharides containing single glucose side chains. FEBS Lett. 1969 Nov 29;5(4):257–261. doi: 10.1016/0014-5793(69)80363-7. [DOI] [PubMed] [Google Scholar]
  8. Laoide B. M., Chambliss G. H., McConnell D. J. Bacillus licheniformis alpha-amylase gene, amyL, is subject to promoter-independent catabolite repression in Bacillus subtilis. J Bacteriol. 1989 May;171(5):2435–2442. doi: 10.1128/jb.171.5.2435-2442.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lederberg E. M., Cohen S. N. Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J Bacteriol. 1974 Sep;119(3):1072–1074. doi: 10.1128/jb.119.3.1072-1074.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nicholson W. L., Park Y. K., Henkin T. M., Won M., Weickert M. J., Gaskell J. A., Chambliss G. H. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J Mol Biol. 1987 Dec 20;198(4):609–618. doi: 10.1016/0022-2836(87)90204-x. [DOI] [PubMed] [Google Scholar]
  11. Pazur J. H., Okada S. A novel method for the action patterns and the differentiation of alpha-1,4-glucan hydrolases. J Biol Chem. 1966 Sep 25;241(18):4146–4151. [PubMed] [Google Scholar]
  12. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  13. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  14. WALKER G. J. THE CELL-BOUND ALPHA-AMYLASES OF STREPTOCOCCUS BOVIS. Biochem J. 1965 Feb;94:289–298. doi: 10.1042/bj0940289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weickert M. J., Chambliss G. H. Genetic analysis of the promoter region of the Bacillus subtilis alpha-amylase gene. J Bacteriol. 1989 Jul;171(7):3656–3666. doi: 10.1128/jb.171.7.3656-3666.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weickert M. J., Chambliss G. H. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238–6242. doi: 10.1073/pnas.87.16.6238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yang M., Galizzi A., Henner D. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Res. 1983 Jan 25;11(2):237–249. doi: 10.1093/nar/11.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES