Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Feb;57(2):440–444. doi: 10.1128/aem.57.2.440-444.1991

Purification and characterization of a secreted recombinant phosphotriesterase (parathion hydrolase) from Streptomyces lividans.

S S Rowland 1, M K Speedie 1, B M Pogell 1
PMCID: PMC182729  PMID: 1849713

Abstract

A heterologous phosphotriesterase (parathion hydrolase), previously cloned from a Flavobacterium species into Streptomyces lividans, was secreted at high levels and purified to homogeneity. N-terminal analysis revealed that it had been processed in the same manner as the native membrane-bound Flavobacterium hydrolase. The enzyme consisted of a single polypeptide with an apparent molecular weight of 35,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Substrate specificity studies showed Kms of 68 microM for parathion, 46 microM for O-ethyl O-p-nitrophenyl phenylphosphonothioate, 599 microM for methyl parathion, and 357 microM for p-nitrophenyl ethyl(phenyl)phosphinate. Temperature and pH optima were 45 degrees C and 9.0, respectively. The purified enzyme was inhibited by 1 mM dithiothreitol and 1 mM CuSO4. After chelation and inactivation by o-phenanthroline, however, activity could be partially restored by 1 mM CuCl or 1 mM CuSO4. The results showed that the purified recombinant parathion hydrolase has the same characteristics as the native Flavobacterium hydrolase. This system provides a source of milligram quantities of parathion hydrolase for future structural and mechanism studies and has the potential to be used in toxic waste treatment strategies.

Full text

PDF
440

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coppella S. J., DelaCruz N., Payne G. F., Pogell B. M., Speedie M. K., Karns J. S., Sybert E. M., Connor M. A. Genetic engineering approach to toxic waste management: case study for organophosphate waste treatment. Biotechnol Prog. 1990 Jan-Feb;6(1):76–81. doi: 10.1021/bp00001a012. [DOI] [PubMed] [Google Scholar]
  2. Dumas D. P., Caldwell S. R., Wild J. R., Raushel F. M. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem. 1989 Nov 25;264(33):19659–19665. [PubMed] [Google Scholar]
  3. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  4. McDaniel C. S., Harper L. L., Wild J. R. Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol. 1988 May;170(5):2306–2311. doi: 10.1128/jb.170.5.2306-2311.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mulbry W. W., Karns J. S., Kearney P. C., Nelson J. O., McDaniel C. S., Wild J. R. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol. 1986 May;51(5):926–930. doi: 10.1128/aem.51.5.926-930.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mulbry W. W., Karns J. S. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J Bacteriol. 1989 Dec;171(12):6740–6746. doi: 10.1128/jb.171.12.6740-6746.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mulbry W. W., Karns J. S. Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl Environ Microbiol. 1989 Feb;55(2):289–293. doi: 10.1128/aem.55.2.289-293.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Munnecke D. M. Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol. 1976 Jul;32(1):7–13. doi: 10.1128/aem.32.1.7-13.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Payne G. F., DelaCruz N., Coppella S. J. Improved production of heterologous protein from Streptomyces lividans. Appl Microbiol Biotechnol. 1990 Jul;33(4):395–400. doi: 10.1007/BF00176653. [DOI] [PubMed] [Google Scholar]
  10. Serdar C. M., Gibson D. T., Munnecke D. M., Lancaster J. H. Plasmid Involvement in Parathion Hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol. 1982 Jul;44(1):246–249. doi: 10.1128/aem.44.1.246-249.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sethunathan N., Yoshida T. A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol. 1973 Jul;19(7):873–875. doi: 10.1139/m73-138. [DOI] [PubMed] [Google Scholar]
  12. Shelton D. R., Somich C. J. Isolation and characterization of coumaphos-metabolizing bacteria from cattle dip. Appl Environ Microbiol. 1988 Oct;54(10):2566–2571. doi: 10.1128/aem.54.10.2566-2571.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES