Abstract
In synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.26) showed a cyclic behavior that coincided with the budding cycle. The invertase activity increased during bud development and ceased at bud maturation and cell scission. The cyclic changes in invertase production resulted in cyclic changes in amounts of invertase localized in the cell wall. However, the amount of enzyme invertase present in the culture liquid remained constant throughout the budding cycle. Also, in asynchronous continuous cultures of S. cerevisiae, the production and localization of invertase showed significant fluctuation. The overall invertase production in an asynchronous culture was two to three times higher than in synchronous cultures. This could be due to more-severe invertase-repressive conditions in a synchronous chemostat culture. Both the intracellular glucose-6-phosphate concentration and residual glucose concentration were significantly higher in synchronous chemostat cultures than in asynchronous chemostat cultures. In the asynchronous and synchronous continuous cultures of S. cerevisiae, about 40% of the invertase was released into the culture liquid; it has generally been believed that S. cerevisiae releases only about 5% of its invertase. In contrast to invertase production and localization in the chemostat cultures of S. cerevisiae, no significant changes in inulinase (EC 3.2.1.7) production and localization were observed in chemostat cultures of Kluyveromyces maxianus CBS 6556. In cultures of K. marxianus about 50% of the inulinase was present in the culture liquid.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck C., von Meyenburg H. K. Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation. J Bacteriol. 1968 Aug;96(2):479–486. doi: 10.1128/jb.96.2.479-486.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cortat M., Matile P., Wiemken A. Isolation of glucanase-containing vesicles from budding yeast. Arch Mikrobiol. 1972;82(3):189–205. doi: 10.1007/BF00412191. [DOI] [PubMed] [Google Scholar]
- Davies R., Wayman F. J. The effect of thiols on Saccharomyces fragilis. Antonie Van Leeuwenhoek. 1975;41(1):33–58. doi: 10.1007/BF02565035. [DOI] [PubMed] [Google Scholar]
- Esmon P. C., Esmon B. E., Schauer I. E., Taylor A., Schekman R. Structure, assembly, and secretion of octameric invertase. J Biol Chem. 1987 Mar 25;262(9):4387–4394. [PubMed] [Google Scholar]
- Field C., Schekman R. Localized secretion of acid phosphatase reflects the pattern of cell surface growth in Saccharomyces cerevisiae. J Cell Biol. 1980 Jul;86(1):123–128. doi: 10.1083/jcb.86.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaspar von Meyenburg H. Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Mikrobiol. 1969;66(4):289–303. doi: 10.1007/BF00414585. [DOI] [PubMed] [Google Scholar]
- Kidby D. K., Davies R. Invertase and disulphide bridges in the yeast wall. J Gen Microbiol. 1970 Jun;61(3):327–333. doi: 10.1099/00221287-61-3-327. [DOI] [PubMed] [Google Scholar]
- Käppeli O., Arreguin M., Rieger M. The respirative breakdown of glucose by Saccharomyces cerevisiae: an assessment of a physiological state. J Gen Microbiol. 1985 Jun;131(6):1411–1416. doi: 10.1099/00221287-131-6-1411. [DOI] [PubMed] [Google Scholar]
- Küenzi M. T., Fiechter A. Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae. Arch Mikrobiol. 1969;64(4):396–407. doi: 10.1007/BF00417021. [DOI] [PubMed] [Google Scholar]
- Lampen J. O. External enzymes of yeast: their nature and formation. Antonie Van Leeuwenhoek. 1968;34(1):1–18. doi: 10.1007/BF02046409. [DOI] [PubMed] [Google Scholar]
- McMurrough I., Rose A. H. Effect of growth rate and substrate limitation on the composition and structure of the cell wall of Saccharomyces cerevisiae. Biochem J. 1967 Oct;105(1):189–203. doi: 10.1042/bj1050189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouwenhorst R. J., Hensing M., Verbakel J., Scheffers W. A., van Duken J. P. Structure and properties of the extracellular inulinase of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol. 1990 Nov;56(11):3337–3345. doi: 10.1128/aem.56.11.3337-3345.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouwenhorst R. J., Visser L. E., Van Der Baan A. A., Scheffers W. A., Van Dijken J. P. Production, Distribution, and Kinetic Properties of Inulinase in Continuous Cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol. 1988 May;54(5):1131–1137. doi: 10.1128/aem.54.5.1131-1137.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepherd M. G. Cell envelope of Candida albicans. Crit Rev Microbiol. 1987;15(1):7–25. doi: 10.3109/10408418709104445. [DOI] [PubMed] [Google Scholar]
- Tkacz J. S., Lampen J. O. Surface distributon of invertase on growing Saccharomyces cells. J Bacteriol. 1973 Feb;113(2):1073–1075. doi: 10.1128/jb.113.2.1073-1075.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Urk H., Postma E., Scheffers W. A., van Dijken J. P. Glucose transport in crabtree-positive and crabtree-negative yeasts. J Gen Microbiol. 1989 Sep;135(9):2399–2406. doi: 10.1099/00221287-135-9-2399. [DOI] [PubMed] [Google Scholar]
- van Urk H., Schipper D., Breedveld G. J., Mak P. R., Scheffers W. A., van Dijken J. P. Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. Biochim Biophys Acta. 1989 Jul 21;992(1):78–86. doi: 10.1016/0304-4165(89)90053-6. [DOI] [PubMed] [Google Scholar]
