Abstract
The performance of Thermoanaerobacter ethanolicus was evaluated in continuous culture with media containing concentrations of xylose (8 to 20 g/liter) greater than those previously reported. The ethanol yield declined from to 0.42 to 0.29 g of ethanol per g of xylose consumed when input xylose was increased from 4 to 20 g/liter. Yields of both total C2 and C3 products from consumed xylose and of cell biomass from ATP produced declined as the input xylose concentration was increased, which was not the case when glucose was the substrate. This suggested that yeast extract functioned as a significant energy and carbon source for cells in fermentations of xylose but not of glucose. The feasibility of this interpretation was confirmed by (i) the calculation of the products theoretically obtainable from yeast extract and (ii) the observation of significant quantities of fermentation products in inoculated sugar-free media. Markedly different patterns of metabolism for the two sugar substrates were also evidenced by the cell yield for glucose being twice that of xylose at elevated sugar concentrations. It was noted that caution must be exerted when results obtained at low xylose concentrations are extrapolated to predict those which can be obtained at higher concentrations.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker H. A. Amino acid degradation by anaerobic bacteria. Annu Rev Biochem. 1981;50:23–40. doi: 10.1146/annurev.bi.50.070181.000323. [DOI] [PubMed] [Google Scholar]
- Brener D., Johnson B. F. Relationship Between Substrate Concentration and Fermentation Product Ratios in Clostridium thermocellum Cultures. Appl Environ Microbiol. 1984 May;47(5):1126–1129. doi: 10.1128/aem.47.5.1126-1129.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryant F. O., Wiegel J., Ljungdahl L. G. Purification and Properties of Primary and Secondary Alcohol Dehydrogenases from Thermoanaerobacter ethanolicus. Appl Environ Microbiol. 1988 Feb;54(2):460–465. doi: 10.1128/aem.54.2.460-465.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donaduzzi L., Germain P., Toukourou F., Myint S. Influence of substrate carbon on the metabolism of Clostridium thermohydrosulfuricum. FEMS Microbiol Lett. 1989 Jan 15;48(2):213–217. doi: 10.1111/j.1574-6968.1989.tb03301.x. [DOI] [PubMed] [Google Scholar]
- Hausman S. Z., Thompson J., London J. Futile xylitol cycle in Lactobacillus casei. J Bacteriol. 1984 Oct;160(1):211–215. doi: 10.1128/jb.160.1.211-215.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacis L. S., Lawford H. G. Thermoanaerobacter ethanolicus in a comparison of the growth efficiencies of thermophilic and mesophilic anaerobes. J Bacteriol. 1985 Sep;163(3):1275–1278. doi: 10.1128/jb.163.3.1275-1278.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamed R., Zeikus J. G. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol. 1980 Nov;144(2):569–578. doi: 10.1128/jb.144.2.569-578.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovitt R. W., Shen G. J., Zeikus J. G. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol. 1988 Jun;170(6):2809–2815. doi: 10.1128/jb.170.6.2809-2815.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muir M., Williams L., Ferenci T. Influence of transport energization on the growth yield of Escherichia coli. J Bacteriol. 1985 Sep;163(3):1237–1242. doi: 10.1128/jb.163.3.1237-1242.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto R., Sonnenberg A. S., Veldkamp H., Konings W. N. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5502–5506. doi: 10.1073/pnas.77.9.5502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vries W., Kapteijn W. M., van der Beek E. G., Stouthamer A. H. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J Gen Microbiol. 1970 Nov;63(3):333–345. doi: 10.1099/00221287-63-3-333. [DOI] [PubMed] [Google Scholar]