Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Feb;57(2):594–596. doi: 10.1128/aem.57.2.594-596.1991

Hydrogen Gas Production by an Ectothiorhodospira vacuolata Strain

Laurie J Chadwick 1,, Roar L Irgens 1,*
PMCID: PMC182755  PMID: 16348423

Abstract

A hydrogen gas (H2)-producing strain of Ectothiorhodospira vacuolata isolated from Soap Lake, Washington, possessed nitrogenase activity. Increasing evolution of H2 with decreasing ammonium chloride concentrations provided evidence that nitrogenase was the catalyst in gas production. Cells were grown in a mineral medium plus 0.2% acetate with sodium sulfide as an electron donor. Factors increasing H2 production included addition of reduced carbon compounds such as propionate and succinate, increased reducing power by increasing sodium sulfide concentrations, and increased energy charge (ATP) by increasing light intensity.

Full text

PDF
594

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol. 1977 Feb;129(2):724–731. doi: 10.1128/jb.129.2.724-731.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol. 1977 Feb;129(2):732–739. doi: 10.1128/jb.129.2.732-739.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. Macler B. A., Pelroy R. A., Bassham J. A. Hydrogen formation in nearly stoichiometric amounts from glucose by a Rhodopseudomonas sphaeroides mutant. J Bacteriol. 1979 May;138(2):446–452. doi: 10.1128/jb.138.2.446-452.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mortenson L. E., Thorneley R. N. Structure and function of nitrogenase. Annu Rev Biochem. 1979;48:387–418. doi: 10.1146/annurev.bi.48.070179.002131. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES