Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Mar;57(3):630–635. doi: 10.1128/aem.57.3.630-635.1991

Carbon Source Control of Cellobiohydrolase I and II Formation by Trichoderma reesei

Robert Messner 1,*, Christian P Kubicek 1
PMCID: PMC182770  PMID: 16348428

Abstract

Regulation of the formation and secretion of two cellulase components from Trichoderma reesei QM 9414, cellobiohydrolases I and II (CBH I and CBH II, respectively), by the carbon source was investigated. With monoclonal antibodies against CBH I and CBH II it was found that during cultivation on carbon sources which enable fast growth (glucose, glycerol, and fructose), no formation of CBH I occurred, whereas low levels of CBH II were formed. Lactose and cellulose, which allow comparably slower growth, promoted the formation of both CBH I and CBH II. However, noncarbohydrate carbon sources as citrate or acetate, which also enable only slow growth, did not promote the formation of CBH I or CBH II. The addition of glucose or glycerol to lactose- or cellulose-pregrown mycelia, on the other hand, only partially reduced the formation of CBH I. This reduction was also achieved by several other metabolizable and nonmetabolizable carbon compounds, e.g., fructose, galactose, β-methylglucoside, 2-deoxyglucose, and rhamnose, as well as by transfer to no carbon source at all. This result indicates that the control of CBH I synthesis by the carbon source is due to induction and not to repression. The use of cycloheximide and 5-fluorouracil as inhibitors at and before translation, respectively, revealed a half-life for CBH I mRNA of at least several hours, which may, at least in part, account for the prolonged synthesis of some CBH I under these conditions. Northern (RNA) hybridization with full copies of cbh1 and cbh2 genes indicated that the control of CBH I and CBH II biosyntheses by the carbon source operates mainly at the pretranslational level. We conclude that the low rate of cellulase synthesis on glucose and some other carbon sources is due to the lack of an inducer and not to carbon source repression.

Full text

PDF
630

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  3. Dean R. A., Timberlake W. E. Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants. Plant Cell. 1989 Mar;1(3):265–273. doi: 10.1105/tpc.1.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kolbe J., Kubicek C. P. Quantification and identification of the main components of the Trichoderma cellulase complex with monoclonal antibodies using an enzyme-linked immunosorbent assay (ELISA). Appl Microbiol Biotechnol. 1990 Oct;34(1):26–30. doi: 10.1007/BF00170918. [DOI] [PubMed] [Google Scholar]
  5. Kubicek C. P. Involvement of a conidial endoglucanase and a plasma-membrane-bound beta-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei. J Gen Microbiol. 1987 Jun;133(6):1481–1487. doi: 10.1099/00221287-133-6-1481. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. MacDonald R. J., Swift G. H., Przybyla A. E., Chirgwin J. M. Isolation of RNA using guanidinium salts. Methods Enzymol. 1987;152:219–227. doi: 10.1016/0076-6879(87)52023-7. [DOI] [PubMed] [Google Scholar]
  8. Mandels M. Applications of cellulases. Biochem Soc Trans. 1985 Apr;13(2):414–416. doi: 10.1042/bst0130414. [DOI] [PubMed] [Google Scholar]
  9. Merivuori H., Siegler K. M., Sands J. A., Montenecourt B. S. Regulation of cellulase biosynthesis and secretion in fungi. Biochem Soc Trans. 1985 Apr;13(2):411–414. doi: 10.1042/bst0130411. [DOI] [PubMed] [Google Scholar]
  10. Mischak H., Hofer F., Messner R., Weissinger E., Hayn M., Tomme P., Esterbauer H., Küchler E., Claeyssens M., Kubicek C. P. Monoclonal antibodies against different domains of cellobiohydrolase I and II from Trichoderma reesei. Biochim Biophys Acta. 1989 Jan 27;990(1):1–7. doi: 10.1016/s0304-4165(89)80003-0. [DOI] [PubMed] [Google Scholar]
  11. Nisizawa T., Suzuki H., Nisizawa K. Catabolite repression of cellulase formation in Trichoderma viride. J Biochem. 1972 Jun;71(6):999–1007. doi: 10.1093/oxfordjournals.jbchem.a129872. [DOI] [PubMed] [Google Scholar]
  12. Revilla G., López-Nieto M. J., Luengo J. M., Martín J. F. Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum. J Antibiot (Tokyo) 1984 Jul;37(7):781–789. doi: 10.7164/antibiotics.37.781. [DOI] [PubMed] [Google Scholar]
  13. Smith C. E., Musich P. R., Johnson D. A. Sodium dodecyl sulfate enhancement of quantitative immunoenzyme dot-blot assays on nitrocellulose. Anal Biochem. 1989 Feb 15;177(1):212–219. doi: 10.1016/0003-2697(89)90043-2. [DOI] [PubMed] [Google Scholar]
  14. Teeri T. T., Lehtovaara P., Kauppinen S., Salovuori I., Knowles J. Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene. 1987;51(1):43–52. doi: 10.1016/0378-1119(87)90472-0. [DOI] [PubMed] [Google Scholar]
  15. Wahl G. M., Berger S. L. Screening colonies or plaques with radioactive nucleic acid probes. Methods Enzymol. 1987;152:415–423. doi: 10.1016/0076-6879(87)52048-1. [DOI] [PubMed] [Google Scholar]
  16. el-Gogary S., Leite A., Crivellaro O., Eveleigh D. E., el-Dorry H. Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6138–6141. doi: 10.1073/pnas.86.16.6138. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES