Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Mar;57(3):655–659. doi: 10.1128/aem.57.3.655-659.1991

Fermentation and aerobic metabolism of cellodextrins by yeasts.

S N Freer 1
PMCID: PMC182775  PMID: 2039228

Abstract

The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wickerhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization less than or equal to 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettano-myces claussenii, B. anomalus, K. dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization greater than 3 produced an enzyme(s) that hydrolyzed cellotretose.

Full text

PDF
655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DUERKSEN J. D., HALVORSON H. Purification and properties of an inducible beta-glucosidase of yeast. J Biol Chem. 1958 Nov;233(5):1113–1120. [PubMed] [Google Scholar]
  2. Desrochers M., Jurasek L., Paice M. G. High Production of beta-Glucosidase in Schizophyllum commune: Isolation of the Enzyme and Effect of the Culture Filtrate on Cellulose Hydrolysis. Appl Environ Microbiol. 1981 Jan;41(1):222–228. doi: 10.1128/aem.41.1.222-228.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fleming L. W., Duerksen J. D. Evidence for multiple molecular forms of yeast beta-glucosidase in a hybrid yeast. J Bacteriol. 1967 Jan;93(1):142–150. doi: 10.1128/jb.93.1.142-150.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fleming L. W., Duerksen J. D. Purification and characterization of yeast beta-glucosidases. J Bacteriol. 1967 Jan;93(1):135–141. doi: 10.1128/jb.93.1.135-141.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freer S. N., Greene R. V. Transport of glucose and cellobiose by Candida wickerhamii and Clavispora lusitaniae. J Biol Chem. 1990 Aug 5;265(22):12864–12868. [PubMed] [Google Scholar]
  6. Freer S. N. Purification and characterization of the extracellular beta-glucosidase produced by Candida wickerhamii. Arch Biochem Biophys. 1985 Dec;243(2):515–522. doi: 10.1016/0003-9861(85)90528-4. [DOI] [PubMed] [Google Scholar]
  7. Gondé P., Blondin B., Leclerc M., Ratomahenina R., Arnaud A., Galzy P. Fermentation of cellodextrins by different yeast strains. Appl Environ Microbiol. 1984 Aug;48(2):265–269. doi: 10.1128/aem.48.2.265-269.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HU A. S., EPSTEIN R., HALVORSON H. O., BOCK R. M. Yeast beta-glucosidase: comparison of the physical-chemical properties of purified constitutive and inducible enzyme. Arch Biochem Biophys. 1960 Dec;91:210–218. doi: 10.1016/0003-9861(60)90492-6. [DOI] [PubMed] [Google Scholar]
  9. Marchin G. L., Duerksen J. D. Comparison of the catalytic and immunological properties of beta-glucosidases from three strains of Saccharomyces lactis. J Bacteriol. 1969 Jan;97(1):237–243. doi: 10.1128/jb.97.1.237-243.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marchin G. L., Duerksen J. D. Purification of beta-glucosidase from Saccharomyces lactis strain Y-123. J Bacteriol. 1968 Oct;96(4):1181–1186. doi: 10.1128/jb.96.4.1181-1186.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marchin G. L., Duerksen J. D. Purification of beta-glucosidase from Saccharomyces lactis strains Y-14 and Y-1057A. J Bacteriol. 1968 Oct;96(4):1187–1190. doi: 10.1128/jb.96.4.1187-1190.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Roth W. W., Srinivasan V. R. Affinity chromatographic purification of beta-glucosidase of Candida gulliermondii. Prep Biochem. 1978;8(1):57–71. doi: 10.1080/00327487808068218. [DOI] [PubMed] [Google Scholar]
  13. Sternberg D., Vijayakumar P., Reese E. T. beta-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol. 1977 Feb;23(2):139–147. doi: 10.1139/m77-020. [DOI] [PubMed] [Google Scholar]
  14. Tingle M., Halvorson H. O. Biochemical and genetic characterization of -glucosidase mutants in Saccharomyces lactis. J Bacteriol. 1972 Apr;110(1):196–201. doi: 10.1128/jb.110.1.196-201.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Van Etten J. L., Freer S. N. Simple procedure for disruption of fungal spores. Appl Environ Microbiol. 1978 Mar;35(3):622–623. doi: 10.1128/aem.35.3.622-623.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Villa T. G., Notario V., Villanueva J. R. Beta-glucanases of the yeast Pichia polymorpha. Arch Microbiol. 1975 Jun 22;104(2):201–206. doi: 10.1007/BF00447325. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES