Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Mar;57(3):765–768. doi: 10.1128/aem.57.3.765-768.1991

Rapid Method for Direct Extraction of mRNA from Seeded Soils

Yu-Li Tsai 1, Marie J Park 1, Betty H Olson 1,*
PMCID: PMC182792  PMID: 16348441

Abstract

A protocol for direct extraction of mRNA from soil samples was developed. Soil samples (10 g) were washed twice with 120 mM phosphate buffer (pH 5.2). The lysis of cells, fixation of RNA, and hydrolysis of DNA were achieved by vigorously shaking the washed soil in a 4 M guanidine thiocyanate solution containing 25 mM sodium citrate, 0.5% sarcosyl, and 0.1 M 2-mercaptoethanol. The pH of the homogenized mixture was adjusted with 2 M sodium acetate (pH 4.0); the mRNA was then extracted with phenol and chloroform. Total RNA was precipitated with isopropanol. This method extracts up to 17 μg of total RNA per g (wet weight) of soil containing 8.0 × 108 cells of Pseudomonas aeruginosa PU21, and mRNA has been detected in 160-ng total RNA fractions. This method has been used for the detection of mRNA transcribed from specific biodegradative genes, including the nah and mer operons, in contaminated soils. This extraction method can be completed within a few hours and has tremendous potential for ecological studies of in situ gene expression among soil microbiotas.

Full text

PDF
765

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barkay T., Liebert C., Gillman M. Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance. Appl Environ Microbiol. 1989 Jun;55(6):1574–1577. doi: 10.1128/aem.55.6.1574-1577.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry T., Powell R., Gannon F. A general method to generate DNA probes for microorganisms. Biotechnology (N Y) 1990 Mar;8(3):233–236. doi: 10.1038/nbt0390-233. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Griffin H. G., Foster T. J., Silver S., Misra T. K. Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358. Proc Natl Acad Sci U S A. 1987 May;84(10):3112–3116. doi: 10.1073/pnas.84.10.3112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holben William E., Jansson Janet K., Chelm Barry K., Tiedje James M. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Appl Environ Microbiol. 1988 Mar;54(3):703–711. doi: 10.1128/aem.54.3.703-711.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jansson J. K., Holben W. E., Tiedje J. M. Detection in soil of a deletion in an engineered DNA sequence by using DNA probes. Appl Environ Microbiol. 1989 Nov;55(11):3022–3025. doi: 10.1128/aem.55.11.3022-3025.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sayler G. S., Shields M. S., Tedford E. T., Breen A., Hooper S. W., Sirotkin K. M., Davis J. W. Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl Environ Microbiol. 1985 May;49(5):1295–1303. doi: 10.1128/aem.49.5.1295-1303.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Somerville C. C., Knight I. T., Straube W. L., Colwell R. R. Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol. 1989 Mar;55(3):548–554. doi: 10.1128/aem.55.3.548-554.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Torsvik V., Goksøyr J., Daae F. L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Torsvik V., Salte K., Sørheim R., Goksøyr J. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):776–781. doi: 10.1128/aem.56.3.776-781.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tsai Y. L., Olson B. H. Effects of Hg, CH(3)-Hg, and Temperature on the Expression of Mercury Resistance Genes in Environmental Bacteria. Appl Environ Microbiol. 1990 Nov;56(11):3266–3272. doi: 10.1128/aem.56.11.3266-3272.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Walia S., Khan A., Rosenthal N. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments. Appl Environ Microbiol. 1990 Jan;56(1):254–259. doi: 10.1128/aem.56.1.254-259.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yen K. M., Gunsalus I. C. Plasmid gene organization: naphthalene/salicylate oxidation. Proc Natl Acad Sci U S A. 1982 Feb;79(3):874–878. doi: 10.1073/pnas.79.3.874. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES