Abstract
A derivative of Bacillus thuringiensis subsp. kurstaki HD1 (HD1-9) released transducing phage (TP21) from late exponential cultures. Three of seven markers tested were transduced into Bacillus cereus, but only two of these (cysC and trpB/F) were transduced at a frequency of more than 100 times the reversion rates. A limited transduction capacity was given further support in that few chromosomal markers were carried in the HD1-9 lysate, as demonstrated by Southern hybridization. Restriction fragments from the phage DNA and from total B. thuringiensis DNA hybridized to an insertion sequence (IS231-like) probe, which may provide a region of homology for transduction. All of the B. cereus transductants contained the phage as a 44-kb plasmid, and each could transduce both the cys and trp genes to other B. cereus auxotrophs, albeit at lower frequencies than those for the B. thuringiensis transducing phage. In some cases, especially for cys, the transduced gene was integrated into the chromosome of the recipient, whereas the trp gene in many cases appeared to be lost with curing of the 44-kb plasmid. In addition, some B. cereus transductants lost prototrophy but retained a 44-kb plasmid, consistent with the presence of TP21 helper phage. These phage may mediate the subsequent transduction from B. cereus phototrophs. TP21 replicates as a plasmid and, at least under the conditions studied, selectively transfers markers to B. cereus.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson A. I., Angelo N., Holt S. C. Regulation of extracellular protease production in Bacillus cereus T: characterization of mutants producing altered amounts of protease. J Bacteriol. 1971 Jun;106(3):1016–1025. doi: 10.1128/jb.106.3.1016-1025.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronson A. I., Beckman W., Dunn P. Bacillus thuringiensis and related insect pathogens. Microbiol Rev. 1986 Mar;50(1):1–24. doi: 10.1128/mr.50.1.1-24.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronson A. I., Beckman W. Transfer of chromosomal genes and plasmids in Bacillus thuringiensis. Appl Environ Microbiol. 1987 Jul;53(7):1525–1530. doi: 10.1128/aem.53.7.1525-1530.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arora S. K. Structural investigations of mode of action of drugs. I. Molecular structure of mitomycin C. Life Sci. 1979 Apr 16;24(16):1519–1526. doi: 10.1016/0024-3205(79)90036-5. [DOI] [PubMed] [Google Scholar]
- Barsomian G. D., Robillard N. J., Thorne C. B. Chromosomal mapping of Bacillus thuringiensis by transduction. J Bacteriol. 1984 Mar;157(3):746–750. doi: 10.1128/jb.157.3.746-750.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Battisti L., Green B. D., Thorne C. B. Mating system for transfer of plasmids among Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. J Bacteriol. 1985 May;162(2):543–550. doi: 10.1128/jb.162.2.543-550.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böttger E. C. High-efficiency generation of plasmid cDNA libraries using electro-transformation. Biotechniques. 1988 Oct;6(9):878–880. [PubMed] [Google Scholar]
- Carle G. F., Olson M. V. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1984 Jul 25;12(14):5647–5664. doi: 10.1093/nar/12.14.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark A. J., Warren G. J. Conjugal transmission of plasmids. Annu Rev Genet. 1979;13:99–125. doi: 10.1146/annurev.ge.13.120179.000531. [DOI] [PubMed] [Google Scholar]
- Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978 Sep;1(4):584–588. doi: 10.1016/0147-619x(78)90016-1. [DOI] [PubMed] [Google Scholar]
- Favret M. E., Yousten A. A. Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol. 1989 Mar;53(2):206–216. doi: 10.1016/0022-2011(89)90009-8. [DOI] [PubMed] [Google Scholar]
- González J. M., Jr, Brown B. J., Carlton B. C. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6951–6955. doi: 10.1073/pnas.79.22.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González J. M., Jr, Dulmage H. T., Carlton B. C. Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid. 1981 May;5(3):352–365. doi: 10.1016/0147-619x(81)90010-x. [DOI] [PubMed] [Google Scholar]
- Green B. D., Battisti L., Thorne C. B. Involvement of Tn4430 in transfer of Bacillus anthracis plasmids mediated by Bacillus thuringiensis plasmid pXO12. J Bacteriol. 1989 Jan;171(1):104–113. doi: 10.1128/jb.171.1.104-113.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henner D. J., Band L., Shimotsu H. Nucleotide sequence of the Bacillus subtilis tryptophan operon. Gene. 1985;34(2-3):169–177. doi: 10.1016/0378-1119(85)90125-8. [DOI] [PubMed] [Google Scholar]
- Inal J. R., Karunakaran V., Burges H. D. Isolation and propagation of phages naturally associated with the aizawai variety of Bacillus thuringiensis. J Appl Bacteriol. 1990 Jan;68(1):17–21. doi: 10.1111/j.1365-2672.1990.tb02543.x. [DOI] [PubMed] [Google Scholar]
- Ito J., Spizizen J. Increased rate of asporogenous mutations following treatment of Bacillus subtilis spores with ethyl methanesulfonate. Mutat Res. 1971 Sep;13(1):93–96. doi: 10.1016/0027-5107(71)90130-8. [DOI] [PubMed] [Google Scholar]
- Kanda K., Tan Y., Aizawa K. A novel phage genome integrated into a plasmid in Bacillus thuringiensis strain AF101. J Gen Microbiol. 1989 Nov;135(11):3035–3041. doi: 10.1099/00221287-135-11-3035. [DOI] [PubMed] [Google Scholar]
- Lereclus D., Lecadet M. M., Ribier J., Dedonder R. Molecular relationships among plasmids of Bacillus thuringiensis: conserved sequences through 11 crystalliferous strains. Mol Gen Genet. 1982;186(3):391–398. doi: 10.1007/BF00729459. [DOI] [PubMed] [Google Scholar]
- Lereclus D., Mahillon J., Menou G., Lecadet M. M. Identification of Tn4430, a transposon of Bacillus thuringiensis functional in Escherichia coli. Mol Gen Genet. 1986 Jul;204(1):52–57. doi: 10.1007/BF00330186. [DOI] [PubMed] [Google Scholar]
- Lereclus D., Menou G., Lecadet M. M. Isolation of a DNA sequence related to several plasmids from Bacillus thuringiensis after a mating involving the Streptococcus faecalis plasmid pAM beta 1. Mol Gen Genet. 1983;191(2):307–313. doi: 10.1007/BF00334831. [DOI] [PubMed] [Google Scholar]
- Logan N. A., Berkeley R. C. Identification of Bacillus strains using the API system. J Gen Microbiol. 1984 Jul;130(7):1871–1882. doi: 10.1099/00221287-130-7-1871. [DOI] [PubMed] [Google Scholar]
- Mahillon J., Hespel F., Pierssens A. M., Delcour J. Cloning and partial characterization of three small cryptic plasmids from Bacillus thuringiensis. Plasmid. 1988 Mar;19(2):169–173. doi: 10.1016/0147-619x(88)90056-x. [DOI] [PubMed] [Google Scholar]
- Mahillon J., Seurinck J., van Rompuy L., Delcour J., Zabeau M. Nucleotide sequence and structural organization of an insertion sequence element (IS231) from Bacillus thuringiensis strain berliner 1715. EMBO J. 1985 Dec 30;4(13B):3895–3899. doi: 10.1002/j.1460-2075.1985.tb04163.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy A., Battisti L., Thorne C. B. Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol. 1987 Nov;169(11):5263–5270. doi: 10.1128/jb.169.11.5263-5270.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds R. B., Reddy A., Thorne C. B. Five unique temperate phages from a polylysogenic strain of Bacillus thuringiensis subsp. aizawai. J Gen Microbiol. 1988 Jun;134(6):1577–1585. doi: 10.1099/00221287-134-6-1577. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Whiteley H. R., Schnepf H. E. The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu Rev Microbiol. 1986;40:549–576. doi: 10.1146/annurev.mi.40.100186.003001. [DOI] [PubMed] [Google Scholar]