Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Apr;57(4):1075–1081. doi: 10.1128/aem.57.4.1075-1081.1991

Characterization of mosquitocidal activity of Bacillus thuringiensis subsp. fukuokaensis crystal proteins.

Y M Yu 1, M Ohba 1, S S Gill 1
PMCID: PMC182848  PMID: 2059032

Abstract

The mosquitocidal crystals of Bacillus thuringiensis subsp. fukuokaensis were isolated and bioassayed against fourth-instar larvae of two mosquito species. The 50% lethal concentration values of the crystals to Aedes aegypti and Culex quinquefasciatus were 4.1 and 2.9 micrograms/ml, respectively. In addition, the solubilized crystals had hemolytic activity; 50 micrograms/ml was the lowest detectable level. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the crystals consisted of polypeptides of 90, 86, 82, 72, 50, 48, 37, and 27 kDa. When the solubilized inclusion was treated with C. quinquefasciatus midgut brush border membrane vesicles or Manduca sexta gut juice, only one major protein was detected. This protein retained mosquitocidal activity but had no detectable hemolytic activity. Immunological analysis of this subspecies and the subspecies israelensis, kyushuensis and darmstadiensis by using polyclonal antisera raised against the whole-crystal protein of B. thuringiensis subsp. fukuokaensis revealed that the proteins in subsp. fukuokaensis are distinct from proteins in the other subspecies because little cross-reaction was observed. Analysis of the plasmid pattern showed that the crystal protein genes are located on a plasmid of 130 MDa. Analysis of plasmid and chromosomal DNA from subsp. fukuokaensis showed little homology to the 72-kDa toxin gene (PG-14) of B. thuringiensis subsp. morrisoni. However, some of the proteins of B. thuringiensis subsp. fukuokaensis are homologous to other B. thuringiensis toxins because N-terminal amino acid analysis revealed that the 90-kDa protein is encoded by a cryIV gene type.

Full text

PDF
1075

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourgouin C., Klier A., Rapoport G. Characterization of the genes encoding the haemolytic toxin and the mosquitocidal delta-endotoxin of Bacillus thuringiensis israelensis. Mol Gen Genet. 1986 Dec;205(3):390–397. doi: 10.1007/BF00338072. [DOI] [PubMed] [Google Scholar]
  2. Chilcott C. N., Ellar D. J. Comparative toxicity of Bacillus thuringiensis var. israelensis crystal proteins in vivo and in vitro. J Gen Microbiol. 1988 Sep;134(9):2551–2558. doi: 10.1099/00221287-134-9-2551. [DOI] [PubMed] [Google Scholar]
  3. Chow E., Singh G. J., Gill S. S. Binding and aggregation of the 25-kilodalton toxin of Bacillus thuringiensis subsp. israelensis to cell membranes and alteration by monoclonal antibodies and amino acid modifiers. Appl Environ Microbiol. 1989 Nov;55(11):2779–2788. doi: 10.1128/aem.55.11.2779-2788.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drobniewski F. A., Ellar D. J. Purification and properties of a 28-kilodalton hemolytic and mosquitocidal protein toxin of Bacillus thuringiensis subsp. darmstadiensis 73-E10-2. J Bacteriol. 1989 Jun;171(6):3060–3067. doi: 10.1128/jb.171.6.3060-3067.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Earp D. J., Ellar D. J. Bacillus thuringiensis var. morrisoni strain PG14: nucleotide sequence of a gene encoding a 27kDa crystal protein. Nucleic Acids Res. 1987 Apr 24;15(8):3619–3619. doi: 10.1093/nar/15.8.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gill S. S., Hornung J. M. Cytolytic activity of Bacillus thuringiensis proteins to insect and mammalian cell lines. J Invertebr Pathol. 1987 Jul;50(1):16–25. doi: 10.1016/0022-2011(87)90140-6. [DOI] [PubMed] [Google Scholar]
  7. Gill S. S., Hornung J. M., Ibarra J. E., Singh G. J., Federici B. A. Cytolytic activity and immunological similarity of the Bacillus thuringiensis subsp. israelensis and Bacillus thuringiensis subsp. morrisoni isolate PG-14 toxins. Appl Environ Microbiol. 1987 Jun;53(6):1251–1256. doi: 10.1128/aem.53.6.1251-1256.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gill S. S., Singh G. J., Hornung J. M. Cell membrane interaction of Bacillus thuringiensis subsp. israelensis cytolytic toxins. Infect Immun. 1987 May;55(5):1300–1308. doi: 10.1128/iai.55.5.1300-1308.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. González J. M., Jr, Carlton B. C. A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid. 1984 Jan;11(1):28–38. doi: 10.1016/0147-619x(84)90004-0. [DOI] [PubMed] [Google Scholar]
  10. Held G. A., Kawanishi C. Y., Huang Y. S. Characterization of the parasporal inclusion of Bacillus thuringiensis subsp. kyushuensis. J Bacteriol. 1990 Jan;172(1):481–483. doi: 10.1128/jb.172.1.481-483.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ibarra J. E., Federici B. A. Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis. J Bacteriol. 1986 Feb;165(2):527–533. doi: 10.1128/jb.165.2.527-533.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim K. H., Ohba M., Aizawa K. Purification of the toxic protein from Bacillus thuringiensis serotype 10 isolate demonstrating a preferential larvicidal activity to the mosquito. J Invertebr Pathol. 1984 Sep;44(2):214–219. doi: 10.1016/0022-2011(84)90015-6. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Maddrell S. H., Lane N. J., Harrison J. B., Overton J. A., Moreton R. B. The initial stages in the action of an insecticidal delta-endotoxin of Bacillus thuringiensis var. israelensis on the epithelial cells of the malpighian tubules of the insect, Rhodnius prolixus. J Cell Sci. 1988 May;90(Pt 1):131–144. doi: 10.1242/jcs.90.1.131. [DOI] [PubMed] [Google Scholar]
  16. Muthukumar G., Nickerson K. W. The glycoprotein toxin of Bacillus thuringiensis subsp. israelensis indicates a lectinlike receptor in the larval mosquito gut. Appl Environ Microbiol. 1987 Nov;53(11):2650–2655. doi: 10.1128/aem.53.11.2650-2655.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohba M., Aizawa K. Occurrence of two pathotypes in Bacillus thuringiensis subsp. fukuokaensis (flagellar serotype 3a:3d:3e). J Invertebr Pathol. 1990 Mar;55(2):293–294. doi: 10.1016/0022-2011(90)90068-h. [DOI] [PubMed] [Google Scholar]
  18. Padua L. E., Ohba M., Aizawa K. The isolates of Bacillus thuringiensis serotype 10 with a highly preferential toxicity to mosquito larvae. J Invertebr Pathol. 1980 Sep;36(2):180–186. doi: 10.1016/0022-2011(80)90022-1. [DOI] [PubMed] [Google Scholar]
  19. Schnell D. J., Pfannenstiel M. A., Nickerson K. W. Bioassay of solubilized Bacillus thuringiensis var. israelensis crystals by attachment to latex beads. Science. 1984 Mar 16;223(4641):1191–1193. doi: 10.1126/science.6701520. [DOI] [PubMed] [Google Scholar]
  20. Thomas W. E., Ellar D. J. Bacillus thuringiensis var israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci. 1983 Mar;60:181–197. doi: 10.1242/jcs.60.1.181. [DOI] [PubMed] [Google Scholar]
  21. Thorne L., Garduno F., Thompson T., Decker D., Zounes M., Wild M., Walfield A. M., Pollock T. J. Structural similarity between the lepidoptera- and diptera-specific insecticidal endotoxin genes of Bacillus thuringiensis subsp. "kurstaki" and "israelensis". J Bacteriol. 1986 Jun;166(3):801–811. doi: 10.1128/jb.166.3.801-811.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tojo A., Aizawa K. Dissolution and Degradation of Bacillus thuringiensis delta-Endotoxin by Gut Juice Protease of the Silkworm Bombyx mori. Appl Environ Microbiol. 1983 Feb;45(2):576–580. doi: 10.1128/aem.45.2.576-580.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ward E. S., Ellar D. J. Nucleotide sequence of a Bacillus thuringiensis var. israelensis gene encoding a 130 kDa delta-endotoxin. Nucleic Acids Res. 1987 Sep 11;15(17):7195–7195. doi: 10.1093/nar/15.17.7195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yamamoto T., McLaughlin R. E. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. Kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem Biophys Res Commun. 1981 Nov 30;103(2):414–421. doi: 10.1016/0006-291x(81)90468-x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES