Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 2006 Oct 25;45(1):237–240. doi: 10.1128/JCM.01429-06

Spoligotype Signatures in the Mycobacterium tuberculosis Complex

E M Streicher 1, T C Victor 1, G van der Spuy 1, C Sola 2, N Rastogi 2, P D van Helden 1, R M Warren 1,*
PMCID: PMC1828946  PMID: 17065260

Abstract

Evolution of the direct repeat region in Mycobacterium tuberculosis has created unique spoligotype signatures specifically associated with IS6110-defined strain families. Spoligotyping signatures may enable the analysis of the strain population structure in different settings and will enable the rapid identification of strain families that acquire drug resistance or escape protective immunity in drug and vaccine trials.


Numerous repeat sequences have been identified in the genome of the Mycobacterium tuberculosis complex, including transposable elements (3), trinucleotide repeats (36), variable number tandem repeats (10), mycobacterial interspersed repetitive units (27), and the direct repeat (DR) region (29). The DR region is one of the most extensively studied loci and consists of direct repeat sequences (36 bp) interspersed with unique spacer sequences (34 to 41 bp), which together are termed direct variable repeat (DVR) sequences (15, 29). The DR region has evolved through the deletion of DVR sequences by homologous recombination, single nucleotide mutations, and the integration of IS6110 elements (1, 29, 34). These events are believed to be unidirectional and to occur over time, making the DR region an informative locus for studying the evolution and epidemiology of the M. tuberculosis complex (9, 13, 35).

Spoligotyping was developed as a genotyping tool to provide information on the structure of the DR region in individual M. tuberculosis strains and in different members of the M. tuberculosis complex (16). The simplicity of this method has allowed for the establishment of an international spoligotype database which describes 39,295 entries from 122 countries (4). Alignment of the spoligotype patterns has allowed authors to group isolates according to similarity to create clades or strain families (8). In addition, distinctive spoligotype patterns have been linked to defined species of the M. tuberculosis complex (8, 18). However, these evolutionary relationships have not been extensively tested with other genotyping methods (9). A positive association between spoligotype and single nucleotide polymorphism cluster groups (SCGs) could not be demonstrated in all instances (9). We hypothesize that the evolution of the DR region has created unique patterns of DVR deletion within the spoligotype and that these patterns are specific to the different IS6110 DNA fingerprinting-defined strain families within the described SCGs. These unique patterns of DVR deletion have been termed spoligotype signatures.

To determine whether evolutionary relationships exist between the IS6110-defined families and spoligotype patterns, M. tuberculosis isolates from patients residing in the epidemiological field site near Cape Town, South Africa, were genotyped according to the internationally standardized IS6110 DNA fingerprinting method (28). DNA fingerprints were analyzed with GelCompar software, using the unweighted-pair group method using average linkages and Dice coefficients (14). Isolates with an IS6110 similarity index of ≥65% were grouped into strain families (22). In this study, DNA fingerprints from isolates of M. tuberculosis collected between 1993 and 1998 were available from 834 tuberculosis (TB) patients, and these fingerprints were grouped into 33 strain families. Representative strains from each strain family were classified into principal genetic groups (PGGs) by DNA sequencing of the katG and gyrA genes (Table 1) (25).

TABLE 1.

Spoligotyping signatures of the Mycobacterium tuberculosis complex

PGGa Species (strain familyb) ST no.c Core spoligotype pattern International family name [reference(s)]d
1 M. africanum 181 ▪▪▪▪▪▪□□□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□▪▪▪▪ AFRI1 (4, 8)*
M. africanum 331 ▪▪▪▪▪▪▪□□□□□▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪▪▪▪▪□□□▪▪▪▪ AFRI2 (4, 8)*
M. africanum 438 ▪▪▪▪▪▪▪□□□□□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□▪▪▪▪ AFRI3 (4, 8)*
M. bovis 482 ▪▪□▪▪▪▪▪□▪▪▪▪▪▪□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□ BOV1/M. bovis-BCG (4, 8)*
M. caprae 647 □▪□□□□□□□□□□□□□□▪▪▪▪▪▪▪▪▪▪▪□▪▪▪▪▪▪▪▪▪▪□□□□□ BOV4 (4)
M. pinnipedii 593 □□□▪▪▪▪□□□□□□□□□□□□□□□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□ PINI1 (4)
M. pinnipedii 637 □□□□□□□□□□□□□□□□□□□□□□□□▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□ PINI2 (4)
M. canettii 592 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□▪□□□□□▪□□□□□□□ canettii (4)
M. microti 539 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□▪▪□□□□□ microti (4)
M. tuberculosis (F27; n = 6) 1 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□▪▪▪▪▪▪▪▪▪ Beijing (12)*
M. tuberculosis (F29; n = 318) 1 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□▪▪▪▪▪▪▪▪▪ Beijing (12)*
M. tuberculosis (F31; n = 31) 1 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□▪▪▪▪▪▪▪▪▪ Beijing (12)*
M. tuberculosis (F25; n = 12) 21 ▪▪▪□□□□▪□▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□□□□□□□□▪▪▪▪▪▪▪▪▪ CAS1/Kili (2, 4, 8, 24)
M. tuberculosis (F20; n = 9) 26 ▪▪▪□□□□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□□□□□□□□□□□▪▪▪▪▪▪ CAS1/Delhi (2, 4, 8, 24)
M. tuberculosis 288 ▪▪▪□□□□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□□□□□□□□▪▪▪▪▪▪▪▪▪ CAS2 (2, 4, 24)*
M. tuberculosis 19 ▪▪□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□▪▪▪▪▪▪▪□□□□▪□▪▪▪▪▪▪▪▪▪ Manila/EAI2 (4, 6)*
M. tuberculosis 236 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪□▪▪▪▪▪▪▪▪▪ Ancestral Mtb/EAI (26)
2 M. tuberculosis (F26; n = 11) 1241 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪□□□□□□▪▪▪▪▪▪▪
M. tuberculosis (F13; n = 26) 20 ▪▪□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ LAM1 (4, 8)*
M. tuberculosis (F11; n = 304) 33 ▪▪▪▪▪▪▪▪□□□▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ LAM3 (8, 31)*
M. tuberculosis (F9; n = 28) 59 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪□□□□▪▪□□□□▪▪▪▪▪▪▪ LAM11-ZWE(4, 7)
M. tuberculosis (F15; n = 17) 60 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪▪□□□□▪▪▪□▪▪▪ LAM4 (4, 8)
M. tuberculosis 209 ▪▪▪▪▪▪▪▪□□□□□□▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ LAM12/Madrid 1 (4, 11)
M. tuberculosis 41 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□▪□□▪▪▪▪▪□□□□▪▪▪▪▪▪▪ LAM7-TUR (4, 37)
M. tuberculosis 61 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ LAM10-Cameroon (4, 20, 21)
M. tuberculosis (F14; n = 52) 765 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□□□▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪
M. tuberculosis (F30; n = 1) 2309 ▪▪▪▪▪▪▪□□□▪▪▪▪▪▪▪▪□□□□□□□▪▪▪▪▪▪□□□□□□▪▪▪▪▪▪
M. tuberculosis (F28; n = 122) 34 ▪▪▪▪▪▪▪▪□□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ S/PZAR-Quebec (4, 8, 19)*
M. tuberculosis (F7; n = 25) 136 ▪▪▪▪▪▪▪▪▪▪▪□□□□□▪▪▪□□□□□▪□▪▪▪▪▪▪□□□□▪□□▪▪▪▪
M. tuberculosis (F3; n = 4) 102 ▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪
M. tuberculosis (F19; n = 6) 37 ▪▪▪▪▪▪▪▪▪▪▪▪□▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ T3 (8)
M. tuberculosis (F6; n = 16) 39 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□▪▪▪□□▪▪▪▪▪▪▪▪□□□□▪□□▪▪▪▪ T4-CE1(4)
M. tuberculosis (LCC; n = 230)e 119 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ X1 family (4, 8, 35)
M. tuberculosis (1banders; n = 21)f,g 53 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ T1 (8)*
M. tuberculosis (F1; n = 4) 47 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□□▪□□□□▪▪▪▪▪▪▪ Haarlem 1 (4, 8, 17)*
M. tuberculosis (F10; n = 6) 47 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□□□▪□□□□▪▪▪▪▪▪▪ Haarlem 1 (4, 8, 17)*
M. tuberculosis (F2; n = 57) 50 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□▪□□□□▪▪▪▪▪▪▪ Haarlem 3 4, 8, 17)
M. tuberculosis (F4; n = 47) 50 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□▪□□□□▪▪▪▪▪▪▪ Haarlem 3 (4, 8, 17)
M. tuberculosis (F24; n = 24) No consistent signature deletion identified
3 M. tuberculosis (F22; n = 4)g 53 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ T1 (8)*
M. tuberculosis (F5; n = 2) 52 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□□□□▪▪▪□▪▪▪ T2 (8)
M. tuberculosis (F8; n = 4) 1067 ▪▪▪▪▪▪▪□□□□□□▪▪▪▪▪▪▪▪□□□▪▪▪▪▪▪▪▪□□□□▪▪▪□□□□
M. tuberculosis (F12; n = 1) ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□▪▪▪▪▪□□□□□□□□□□□□□▪▪
M. tuberculosis (F16; n = 16) No consistent signature deletion identified
M. tuberculosis (F17; n = 12) No consistent signature deletion identified
M. tuberculosis (F18; n = 31) No consistent signature deletion identified
M. tuberculosis (F21; n = 29) No consistent signature deletion identified
M. tuberculosis (F23; n = 30) No consistent signature deletion identified
M. tuberculosis 58 ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪□▪▪□▪▪▪▪▪▪▪▪▪□□□□▪▪▪▪▪▪▪ Madrid 2 (11)
a

PGGs are based on katG463 and gyrA95 classification (25).

b

Strain classification of local families for Mycobacterium tuberculosis according to a report by Richardson et al. (22). n, number of cases.

c

Shared-type number as described in the SpolDB4 database (4).

d

*, matches the SPOTCLUST algorithm using a randomly initialized model (32).

e

LCC, low-copy-number clade (35). These strains have two to six bands on the IS6110 fingerprint pattern.

f

The strains in this strain family have one copy of IS6110 (35).

g

Although there is a uniform spoligotype pattern, no signature other than the deletion of spacers 33 to 36 is present.

At least one strain representing each IS6110 banding pattern within a strain family was subjected to spoligotyping using an internationally standardized method (16). In this study, a spoligotype signature was defined as the deletion of either a single DVR or multiple DVRs unique to all members of a specific strain family. Random deletions of DVRs were ignored, as they probably represent recent evolutionary events which occurred after the evolutionary event that generated the signature and were not inherited by all progeny. Spoligotype signatures were compared to previously published spoligotype data (2, 4, 6-8, 11, 12, 17, 19-21, 24, 26, 31, 35, 37).

Table 1 shows that the deletion of DVRs 33 to 36 was common to all members of PGGs 2 and 3. Twenty-seven of 33 (82%) strain families had spoligotype signatures. Eighteen of these spoligotype signatures were unique to a specific strain family, suggesting that these strain families had evolved independently. In contrast, five strain families (F9, F11, F13, F15, and F26) shared a distinct spoligotype signature (with DVRs 21 to 24 deleted) and had evolved their own defining signature, suggesting that these families are closely related and have evolved from a common progenitor. This evolutionary relationship was supported by IS6110 insertion site mapping (33). Comparison of these spoligotypes with the SpolDB4 database shows that these families form part of the previously described Latino-American and Mediterranean (LAM) family (8). Family F11 has the characteristic LAM3 signature, F13 corresponds to LAM1, F15 corresponds to LAM4, and F9 corresponds to LAM11-ZWE (Table 1) (4). A review of the literature showed that spoligotype signatures were also identified for the other members of the M. tuberculosis complex (Table 1) (4, 16, 23, 29, 30).

Spoligotype signatures were absent from six strain families (Table 1). The absence of a spoligotype signature was associated with PGGs 2 and 3 (Table 1). These strains were previously described as belonging to the T-strain family, thereby confirming a previous report which demonstrated that the T-strain family spoligotypes were distributed in a number of different SCGs (9). Although the T-strain family remains ill-defined, certain clones within the T-strain family have been characterized by specific deletions of DVRs (Table 1) (4). The presence of other defining signatures within the different T-strain family members cannot be excluded, as still-recognized signatures may have evolved within the DR regions of these strains and may fall outside of the 43 DVR sequences routinely analyzed.

The visual method of defining a spoligotype signature compared well with the previously described SPOTCLUST algorithm (32).

We acknowledge that the definition of a spoligotype signature used in this study has certain limitations, as it is possible that, although such events are rare, extensive deletion of DVR sequences may lead to convergence (34). Similarly, deletion of a small number of DVRs may lead to convergence, resulting in misclassification. Although no cases of misclassification were detected in this study, the potential limitation of the use of spoligotypes in phylogenetic analysis should be highlighted.

Despite these limitations, spoligotyping remains a highly informative genotyping method, and the identification of strain family-specific signatures provides an important marker for clonality. The classification of most strains into distinct evolutionary groups will enable the rapid stratification of patients in studies aimed at identifying pathogenic characteristics associated with the disease-causing strain (5, 9). Furthermore, this method will enable the rapid identification of emerging strain families. We propose that the identification of spoligotype signatures will provide a means to determine the strain population structure in different geographical settings and on a global scale. Identification of spoligotype signatures will also be an important tool in the monitoring of drug and vaccine trials, as it will enable the detection of strain families which may have a greater propensity to acquire drug resistance or to escape protective immunity.

Acknowledgments

We thank the South African National Research Foundation (grants GUN 2054278 and DST/NRF Centre of Excellence in Biomedical Tuberculosis Research), the Wellcome Trust (grant 072402/Z/03/Z), and the IAEA (grant SAF6008) for financial support.

Footnotes

Published ahead of print on 25 October 2006.

REFERENCES

  • 1.Aga, R. S., E. Fair, N. F. Abernethy, K. DeRiemer, E. A. Paz, L. M. Kawamura, P. M. Small, and M. Kato-Maeda. 2006. Microevolution of the direct repeat locus of Mycobacterium tuberculosis in a strain prevalent in San Francisco. J. Clin. Microbiol. 44:1558-1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Bhanu, N. V., D. van Soolingen, J. D. van Embden, L. Dar, R. M. Pandey, and P. Seth. 2002. Predominance of a novel Mycobacterium tuberculosis genotype in the Delhi region of India. Tuberculosis (Edinburgh) 82:105-112. [DOI] [PubMed] [Google Scholar]
  • 3.Brosch, R., A. S. Pym, S. V. Gordon, and S. T. Cole. 2001. The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol. 9:452-458. [DOI] [PubMed] [Google Scholar]
  • 4.Brudey, K., J. R. Driscoll, L. Rigouts, W. M. Prodinger, A. Gori, S. A. Al Hajoj, C. Allix, L. Aristimuno, J. Arora, V. Baumanis, L. Binder, P. Cafrune, A. Cataldi, S. Cheong, R. Diel, C. Ellermeier, J. T. Evans, M. Fauville-Dufaux, S. Ferdinand, D. Garcia de Viedma, C. Garzelli, L. Gazzola, H. M. Gomes, M. C. Gutierrez, P. M. Hawkey, P. D. van Helden, G. V. Kadival, B. N. Kreiswirth, K. Kremer, M. Kubin, S. P. Kulkarni, B. Liens, T. Lillebaek, M. L. Ho, C. Martin, C. Martin, I. Mokrousov, O. Narvskaia, Y. F. Ngeow, L. Naumann, S. Niemann, I. Parwati, Z. Rahim, V. Rasolofo- Razanamparany, T. Rasolonavalona, M. L. Rossetti, S. Rusch-Gerdes, A. Sajduda, S. Samper, I. Shemyakin, U. B. Singh, A. Somoskovi, R. Skuce, D. van Soolingen, E. M. Streicher, P. N. Suffys, E. Tortoli, T. Tracevska, V. Vincent, T. C. Victor, R. Warren, S. F. Yap, K. Zaman, F. Portaels, N. Rastogi, and C. Sola. 2006. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 6:23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Dale, J. W., G. H. Bothamley, F. Drobniewski, S. H. Gillespie, T. D. McHugh, and R. Pitman. 2005. Origins and properties of Mycobacterium tuberculosis isolates in London. J. Med. Microbiol. 54:575-582. [DOI] [PubMed] [Google Scholar]
  • 6.Douglas, J. T., L. Qian, J. C. Montoya, J. M. Musser, J. D. A. van Embden, D. van Soolingen, and K. Kremer. 2003. Characterization of the Manila family of Mycobacterium tuberculosis. J. Clin. Microbiol. 41:2723-2726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Easterbrook, P. J., A. Gibson, S. Murad, D. Lamprecht, N. Ives, A. Ferguson, O. Lowe, P. Mason, A. Ndudzo, A. Taziwa, R. Makombe, L. Mbengeranwa, C. Sola, N. Rastogi, and F. Drobniewski. 2004. High rates of clustering of strains causing tuberculosis in Harare, Zimbabwe: a molecular epidemiological study. J. Clin. Microbiol. 42:4536-4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Filliol, I., J. R. Driscoll, D. van Soolingen, B. N. Kreiswirth, K. Kremer, G. Valetudie, D. D. Anh, R. Barlow, D. Banerjee, P. J. Bifani, K. Brudey, A. Cataldi, R. C. Cooksey, D. V. Cousins, J. W. Dale, O. A. Dellagostin, F. Drobniewski, G. Engelmann, S. Ferdinand, D. Gascoyne-Binzi, M. Gordon, M. C. Gutierrez, W. H. Haas, H. Heersma, G. Kallenius, E. Kassa-Kelembho, T. Koivula, H. M. Ly, A. Makristathis, C. Mammina, G. Martin, P. Mostrom, I. Mokrousov, V. Narbonne, O. Narvskaya, A. Nastasi, S. N. Niobe-Eyangoh, J. W. Pape, V. Rasolofo-Razanamparany, M. Ridell, M. L. Rossetti, F. Stauffer, P. N. Suffys, H. Takiff, J. Texier-Maugein, V. Vincent, J. H. De Waard, C. Sola, and N. Rastogi. 2002. Global distribution of Mycobacterium tuberculosis spoligotypes. Emerg. Infect. Dis. 8:1347-1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Filliol, I., A. S. Motiwala, M. Cavatore, W. Qi, M. H. Hazbón, M. Bobadilla del Valle, J. Fyfe, L. García-García, N. Rastogi, C. Sola, T. Zozio, M. I. Guerrero, C. I. León, J. Crabtree, S. Angiuoli, K. D. Eisenach, R. Durmaz, M. L. Joloba, A. Rendón, J. Sifuentes-Osornio, A. Ponce de León, M. D. Cave, R. Fleischmann, T. S. Whittam, and D. Alland. 2006. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J. Bacteriol. 188:759-772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Frothingham, R., and W. A. Meeker-O'Connell. 1998. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144:1189-1196. [DOI] [PubMed] [Google Scholar]
  • 11.Garciá de Viedma, D., E. Bouza, N. Rastogi, and C. Sola. 2005. Analysis of Mycobacterium tuberculosis genotypes in Madrid and identification of two new families specific to Spain-related settings. J. Clin. Microbiol. 43:1797-1806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Glynn, J. R., J. Whiteley, P. J. Bifani, K. Kremer, and D. van Soolingen. 2002. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg. Infect. Dis. 8:843-849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Groenen, P. M., A. E. Bunschoten, D. van Soolingen, and J. D. van Embden. 1993. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol. 10:1057-1065. [DOI] [PubMed] [Google Scholar]
  • 14.Hermans, P. W., F. Messadi, H. Guebrexabher, D. van Soolingen, P. E. de Haas, H. Heersma, H. de Neeling, A. Ayoub, F. Portaels, and D. Frommel. 1995. Analysis of the population structure of Mycobacterium tuberculosis in Ethiopia, Tunisia, and The Netherlands: usefulness of DNA typing for global tuberculosis epidemiology. J. Infect. Dis. 171:1504-1513. [DOI] [PubMed] [Google Scholar]
  • 15.Hermans, P. W. M., D. van Soolingen, E. M. Bik, P. E. W. de Haas, J. W. Dale, and J. D. A. van Embden. 1991. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect. Immun. 59:2695-2705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kamerbeek, J., L. Schouls, A. Kolk, M. van Agterveld, D. van Soolingen, S. Kuijper, A. Bunschoten, H. Molhuizen, R. Shaw, M. Goyal, and J. van Embden. 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35:907-914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kremer, K., D. van Soolingen, R. Frothingham, W. H. Haas, P. W. M. Hermans, C. Martín, P. Palittapongarnpim, B. B. Plikaytis, L. W. Riley, M. A. Yakrus, J. M. Musser, and J. D. van Embden. 1999. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J. Clin. Microbiol. 37:2607-2618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Molhuizen, H. O., A. E. Bunschoten, L. M. Schouls, and J. D. van Embden. 1998. Rapid detection and simultaneous strain differentiation of Mycobacterium tuberculosis complex bacteria by spoligotyping. Methods Mol. Biol. 101:381-394. [DOI] [PubMed] [Google Scholar]
  • 19.Nguyen, D., P. Brassard, J. Westley, L. Thibert, M. Proulx, K. Henry, K. Schwartzman, D. Menzies, and M. A. Behr. 2003. Widespread pyrazinamide-resistant Mycobacterium tuberculosis family in a low-incidence setting. J. Clin. Microbiol. 41:2878-2883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Niobe-Eyangoh, S. N., C. Kuaban, P. Sorlin, P. Cunin, J. Thonnon, C. Sola, N. Rastogi, V. Vincent, and M. C. Gutierrez. 2003. Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J. Clin. Microbiol. 41:2547-2553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Niobe-Eyangoh, S. N., C. Kuaban, P. Sorlin, J. Thonnon, V. Vincent, and M. C. Gutierrez. 2004. Molecular characteristics of strains of the Cameroon family, the major group of Mycobacterium tuberculosis in a country with a high prevalence of tuberculosis. J. Clin. Microbiol. 42:5029-5035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Richardson, M., S. W. van Lill, G. D. van der Spuy, Z. Munch, C. N. Booysen, N. Beyers, P. D. van Helden, and R. M. Warren. 2002. Historic and recent events contribute to the disease dynamics of Beijing-like Mycobacterium tuberculosis isolates in a high incidence region. Int. J. Tuberc. Lung Dis. 6:1001-1011. [PubMed] [Google Scholar]
  • 23.Sebban, M., I. Mokrousov, N. Rastogi, and C. Sola. 2002. A data-mining approach to spacer oligonucleotide typing of Mycobacterium tuberculosis. Bioinformatics 18:235-243. [DOI] [PubMed] [Google Scholar]
  • 24.Singh, U. B., N. Suresh, N. V. Bhanu, J. Arora, H. Pant, S. Sinha, R. C. Aggarwal, S. Singh, J. N. Pande, C. Sola, and P. Seth. 2004. Predominant tuberculosis spoligotypes, Delhi, India. Emerg. Infect. Dis. 10:1138-1142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sreevatsan, S., X. Pan, K. E. Stockbauer, N. D. Connell, B. N. Kreiswirth, T. S. Whittam, and J. M. Musser. 1997. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl. Acad. Sci. USA 94:9869-9874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Sun, Y.-J., A. S. G. Lee, S. T. Ng, S. Ravindran, K. Kremer, R. Bellamy, S.-Y. Wong, D. van Soolingen, P. Supply, and N. I. Paton. 2004. Characterization of ancestral Mycobacterium tuberculosis by multiple genetic markers and proposal of genotyping strategy. J. Clin. Microbiol. 42:5058-5064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Supply, P., S. Lesjean, E. Savine, K. Kremer, D. van Soolingen, and C. Locht. 2001. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J. Clin. Microbiol. 39:3563-3571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.van Embden, J. D. A., M. D. Cave, J. T. Crawford, J. W. Dale, K. D. Eisenach, B. Gicquel, P. Hermans, C. Martin, R. McAdam, T. M. Shinnick, and P. M. Small. 1993. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J. Clin. Microbiol. 31:406-409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.van Embden, J. D. A., T. van Gorkom, K. Kremer, R. Jansen, B. A. M. van der Zeijst, and L. M. Schouls. 2000. Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J. Bacteriol. 182:2393-2401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.van Soolingen, D., A. G. M. van der Zanden, P. E. W. de Haas, G. T. Noordhoek, A. Kiers, N. A. Foudraine, F. Portaels, A. H. J. Kolk, K. Kremer, and J. D. A. van Embden. 1998. Diagnosis of Mycobacterium microti infections among humans by using novel genetic markers. J. Clin. Microbiol. 36:1840-1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Victor, T. C., P. E. W. de Haas, A. M. Jordaan, G. D. van der Spuy, M. Richardson, D. van Soolingen, P. D. van Helden, and R. Warren. 2004. Molecular characteristics and global spread of Mycobacterium tuberculosis with a Western Cape F11 genotype. J. Clin. Microbiol. 42:769-772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Vitol, I., J. Driscoll, B. Kreiswirth, N. Kurepina, and K. P. Bennett. 2006. Identifying Mycobacterium tuberculosis complex strain families using spoligotypes. Infect. Genet. Evol. 6:491-504. [DOI] [PubMed] [Google Scholar]
  • 33.Warren, R. M., S. L. Sampson, M. Richardson, G. D. van der Spuy, C. J. Lombard, T. C. Victor, and P. D. van Helden. 2000. Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol. Microbiol. 37:1405-1416. [DOI] [PubMed] [Google Scholar]
  • 34.Warren, R. M., E. M. Streicher, S. L. Sampson, G. D. van der Spuy, M. Richardson, D. Nguyen, M. A. Behr, T. C. Victor, and P. D. van Helden. 2002. Microevolution of the direct repeat region of Mycobacterium tuberculosis: implications for interpretation of spoligotyping data. J. Clin. Microbiol. 40:4457-4465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Warren, R. M., T. C. Victor, E. M. Streicher, M. Richardson, G. D. van der Spuy, R. Johnson, V. N. Chihota, C. Locht, P. Supply, and P. D. van Helden. 2004. Clonal expansion of a globally disseminated lineage of Mycobacterium tuberculosis with low IS6110 copy numbers. J. Clin. Microbiol. 42:5774-5782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Wiid, I. J. F., C. Werely, N. Beyers, P. Donald, and P. D. van Helden. 1994. Oligonucleotide (GTG)5 as a marker for Mycobacterium tuberculosis strain identification. J. Clin. Microbiol. 32:1318-1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Zozio, T., C. Allix, S. Gunal, Z. Saribas, A. Alp, R. Durmaz, M. Fauville-Dufaux, N. Rastogi, and C. Sola. 2005. Genotyping of Mycobacterium tuberculosis clinical isolates in two cities of Turkey: description of a new family of genotypes that is phylogeographically specific for Asia Minor. BMC Microbiol. 5:44. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES