Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 May;57(5):1540–1545. doi: 10.1128/aem.57.5.1540-1545.1991

Subgroups of the Cowpea Miscellany: Symbiotic Specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum

Janice E Thies 1, B Ben Bohlool 1,*, Paul W Singleton 1
PMCID: PMC182982  PMID: 16348492

Abstract

Rhizobia classified as Bradyrhizobium spp. comprise a highly heterogeneous group of bacteria that exhibit differential symbiotic characteristics on hosts in the cowpea miscellany cross-inoculation group. To delineate the degree of specificity exhibited by four legumes in the cowpea miscellany, we tested the symbiotic characteristics of indigenous cowpea bradyrhizobia on cowpea (Vigna unguiculata), siratro (Macroptilium atropurpureum), lima bean (Phaseolus lunatus), and peanut (Arachis hypogaea). The most-probable-number counts of indigenous bradyrhizobia at three sites on Maui, Hawaii, were substantially different on the four hosts: highest on siratro, intermediate on cowpea, and significantly lower on both lima bean and peanut. Bradyrhizobia from single cowpea nodules from the most-probable-number assays were inoculated onto the four hosts. Effectiveness patterns of these rhizobia on cowpea followed a normal distribution but were strikingly different on the other legumes. The effectiveness profiles on siratro and cowpea were similar but not identical. The indigenous cowpea-derived bradyrhizobia were of only moderate effectiveness on siratro and were in all cases lower than the inoculant-quality reference strain. Between 5 and 51% of the bradyrhizobia, depending on site, failed to nodulate peanut, whereas 0 to 32% failed to nodulate lima bean. No significant correlation was observed between the relative effectiveness of the bradyrhizobia on cowpea and their corresponding effectiveness on either lima bean or peanut. At all sites, bradyrhizobia that were ineffective on cowpea but that effectively nodulated lima bean, peanut, or both were found. Eighteen percent or fewer of the bradyrhizobia were as effective on lima bean as the reference inoculant strain; 44% or fewer were as effective on peanut as the reference strain. Only 18% of all cowpea-derived bradyrhizobia tested were able to form N2-fixing nodules on both lima bean and peanut. These results indicate the need to measure indigenous bradyrhizobial population characteristics directly with the crop of interest to obtain an accurate assessment of the need to inoculate.

Full text

PDF
1540

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Singleton P. W., Tavares J. W. Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations. Appl Environ Microbiol. 1986 May;51(5):1013–1018. doi: 10.1128/aem.51.5.1013-1018.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Thies J. E., Singleton P. W., Bohlool B. B. Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol. 1991 Jan;57(1):19–28. doi: 10.1128/aem.57.1.19-28.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Thies J. E., Singleton P. W., Bohlool B. B. Modeling symbiotic performance of introduced rhizobia in the field by use of indices of indigenous population size and nitrogen status of the soil. Appl Environ Microbiol. 1991 Jan;57(1):29–37. doi: 10.1128/aem.57.1.29-37.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Woomer P., Singleton P. W., Bohlool B. B. Ecological indicators of native rhizobia in tropical soils. Appl Environ Microbiol. 1988 May;54(5):1112–1116. doi: 10.1128/aem.54.5.1112-1116.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES