Abstract
A pentachlorophenol (PCP)-mineralizing bacterium was isolated from polluted soil and identified as Pseudomonas sp. strain RA2. In batch cultures, Pseudomonas sp. strain RA2 used PCP as its sole source of carbon and energy and was capable of completely degrading this compound as indicated by radiotracer studies, stoichiometric release of chloride, and biomass formation. Pseudomonas sp. strain RA2 was able to mineralize a higher concentration of PCP (160 mg liter-1) than any previously reported PCP-degrading pseudomonad. At a PCP concentration of 200 mg liter-1, cell growth was completely inhibited and PCP was not degraded, although an active population of Pseudomonas sp. RA2 was still present in these cultures after 2 weeks. The inhibitory effect of PCP was partially attributable to its effect on the growth rate of Pseudomonas sp. strain RA2. The highest specific growth rate (mu = 0.09 h-1) was reached at a PCP concentration of 40 mg liter-1 but decreased at higher or lower PCP concentrations, with the lowest mu (0.05 h-1) occurring at 150 mg liter-1. Despite this reduction in growth rate, total biomass production was proportional to PCP concentration at all PCP concentrations degraded by Pseudomonas sp. RA2. In contrast, final cell density was reduced to below expected values at PCP concentrations greater than 100 mg liter-1. These results indicate that, in addition to its effect as an uncoupler of oxidative phosphorylation, PCP may also inhibit cell division in Pseudomonas sp. strain RA2.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer J. E., Capone D. G. Effects of four aromatic organic pollutants on microbial glucose metabolism and thymidine incorporation in marine sediments. Appl Environ Microbiol. 1985 Apr;49(4):828–835. doi: 10.1128/aem.49.4.828-835.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cserjesi A. J., Johnson E. L. Methylation of pentachlorophenol by Trichoderma virgatum. Can J Microbiol. 1972 Jan;18(1):45–49. doi: 10.1139/m72-007. [DOI] [PubMed] [Google Scholar]
- Harder W., Dijkhuizen L. Strategies of mixed substrate utilization in microorganisms. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 11;297(1088):459–480. doi: 10.1098/rstb.1982.0055. [DOI] [PubMed] [Google Scholar]
- Heimbrook M. E., Wang W. L., Campbell G. Staining bacterial flagella easily. J Clin Microbiol. 1989 Nov;27(11):2612–2615. doi: 10.1128/jcm.27.11.2612-2615.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess T. F., Schmidt S. K., Silverstein J., Howe B. Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Appl Environ Microbiol. 1990 Jun;56(6):1551–1558. doi: 10.1128/aem.56.6.1551-1558.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häggblom M. M., Nohynek L. J., Salkinoja-Salonen M. S. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl Environ Microbiol. 1988 Dec;54(12):3043–3052. doi: 10.1128/aem.54.12.3043-3052.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karns J. S., Kilbane J. J., Duttagupta S., Chakrabarty A. M. Metabolism of Halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl Environ Microbiol. 1983 Nov;46(5):1176–1181. doi: 10.1128/aem.46.5.1176-1181.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klecka G. M., Maier W. J. Kinetics of microbial growth on pentachlorophenol. Appl Environ Microbiol. 1985 Jan;49(1):46–53. doi: 10.1128/aem.49.1.46-53.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LaPat-Polasko L. T., McCarty P. L., Zehnder A. J. Secondary substrate utilization of methylene chloride by an isolated strain of Pseudomonas sp. Appl Environ Microbiol. 1984 Apr;47(4):825–830. doi: 10.1128/aem.47.4.825-830.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mileski G. J., Bumpus J. A., Jurek M. A., Aust S. D. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1988 Dec;54(12):2885–2889. doi: 10.1128/aem.54.12.2885-2889.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostle A. G., Holt J. G. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol. 1982 Jul;44(1):238–241. doi: 10.1128/aem.44.1.238-241.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pignatello J. J., Martinson M. M., Steiert J. G., Carlson R. E., Crawford R. L. Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl Environ Microbiol. 1983 Nov;46(5):1024–1031. doi: 10.1128/aem.46.5.1024-1031.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reineke W., Knackmuss H. J. Microbial degradation of haloaromatics. Annu Rev Microbiol. 1988;42:263–287. doi: 10.1146/annurev.mi.42.100188.001403. [DOI] [PubMed] [Google Scholar]
- Saber D. L., Crawford R. L. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol. 1985 Dec;50(6):1512–1518. doi: 10.1128/aem.50.6.1512-1518.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt S. K., Alexander M. Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations. Appl Environ Microbiol. 1985 Apr;49(4):822–827. doi: 10.1128/aem.49.4.822-827.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt S. K., Scow K. M., Alexander M. Kinetics of p-nitrophenol mineralization by a Pseudomonas sp.: effects of second substrates. Appl Environ Microbiol. 1987 Nov;53(11):2617–2623. doi: 10.1128/aem.53.11.2617-2623.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smejtek P., Barstad A. W., Wang S. Pentachlorophenol-induced change of zeta-potential and gel-to-fluid transition temperature in model lecithin membranes. Chem Biol Interact. 1989;71(1):37–61. doi: 10.1016/0009-2797(89)90089-6. [DOI] [PubMed] [Google Scholar]
- Stanlake G. J., Finn R. K. Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microbiol. 1982 Dec;44(6):1421–1427. doi: 10.1128/aem.44.6.1421-1427.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suwalsky M., Espinoza M. A., Bagnara M., Sotomayor C. P. X-ray and fluorescence studies on phospholipid bilayers. IX. Interactions with pentachlorophenol. Z Naturforsch C. 1990 Mar-Apr;45(3-4):265–272. doi: 10.1515/znc-1990-3-421. [DOI] [PubMed] [Google Scholar]
- Suzuki T. Metabolism of pentachlorophenol by a soil microbe. J Environ Sci Health B. 1977;12(2):113–127. doi: 10.1080/03601237709372057. [DOI] [PubMed] [Google Scholar]
- WEINBACH E. C., GARBUS J. THE INTERACTION OF UNCOUPLING PHENOLS WITH MITOCHONDRIA AND WITH MITOCHONDRIAL PROTEIN. J Biol Chem. 1965 Apr;240:1811–1819. [PubMed] [Google Scholar]
- Wiggins B. A., Alexander M. Role of chemical concentration and second carbon sources in acclimation of microbial communities for biodegradation. Appl Environ Microbiol. 1988 Nov;54(11):2803–2807. doi: 10.1128/aem.54.11.2803-2807.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoyama M. T., Johnson K. A., Gierzak J. Sensitivity of ruminal microorganisms to pentachlorophenol. Appl Environ Microbiol. 1988 Nov;54(11):2619–2624. doi: 10.1128/aem.54.11.2619-2624.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
