Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Sep;58(9):2928–2932. doi: 10.1128/aem.58.9.2928-2932.1992

Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2.

H Lenke 1, D H Pieper 1, C Bruhn 1, H J Knackmuss 1
PMCID: PMC183028  PMID: 1444407

Abstract

Two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2, were isolated from soil and river water by their abilities to utilize 2,4-dinitrophenol (0.5 mM) as the sole source of nitrogen. Although succinate was supplied as a carbon and energy source during selection, both isolates could utilize 2,4-dinitrophenol also as the sole source of carbon. Both strains metabolized 2,4-dinitrophenol under concomitant liberation of stoichiometric amounts of nitrite and 4,6-dinitrohexanoate as a minor dead-end metabolite.

Full text

PDF
2928

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruhn C., Lenke H., Knackmuss H. J. Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl Environ Microbiol. 1987 Jan;53(1):208–210. doi: 10.1128/aem.53.1.208-210.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. GERMANIER R., WUHRMANN K. UBER DEN AEROBEN MIKROBIELLEN ABBAU AROMATISCHER NITROVERBINDUNGEN. Pathol Microbiol (Basel) 1963;26:569–578. [PubMed] [Google Scholar]
  3. Greville G. D., Stern K. G. The reduction of dinitrophenols by redox indicators and enzymes. Biochem J. 1935 Feb;29(2):487–499. doi: 10.1042/bj0290487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hess T. F., Schmidt S. K., Silverstein J., Howe B. Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Appl Environ Microbiol. 1990 Jun;56(6):1551–1558. doi: 10.1128/aem.56.6.1551-1558.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. JENSEN H. L., GUNDERSEN K. Biological decomposition of aromatic nitro-compounds. Nature. 1955 Feb 19;175(4451):341–341. doi: 10.1038/175341a0. [DOI] [PubMed] [Google Scholar]
  6. Kaplan A. The determination of urea, ammonia, and urease. Methods Biochem Anal. 1969;17:311–324. doi: 10.1002/9780470110355.ch7. [DOI] [PubMed] [Google Scholar]
  7. Lenke H., Knackmuss H. J. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Appl Environ Microbiol. 1992 Sep;58(9):2933–2937. doi: 10.1128/aem.58.9.2933-2937.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MADHOSINGH C. The metabolic detoxication of 2,4-dinitrophenol by Fusarium oxysporum. Can J Microbiol. 1961 Aug;7:553–567. doi: 10.1139/m61-065. [DOI] [PubMed] [Google Scholar]
  9. Spain J. C., Gibson D. T. Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp. Appl Environ Microbiol. 1991 Mar;57(3):812–819. doi: 10.1128/aem.57.3.812-819.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Spain J. C., Wyss O., Gibson D. T. Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun. 1979 May 28;88(2):634–641. doi: 10.1016/0006-291x(79)92095-3. [DOI] [PubMed] [Google Scholar]
  11. WESTERFELD W. W., RICHERT D. A., HIGGINS E. S. The metabolic reduction of organic nitro groups. J Biol Chem. 1957 Jul;227(1):379–391. [PubMed] [Google Scholar]
  12. Zeyer J., Kocher H. P. Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite. J Bacteriol. 1988 Apr;170(4):1789–1794. doi: 10.1128/jb.170.4.1789-1794.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zeyer J., Kocher H. P., Timmis K. N. Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl Environ Microbiol. 1986 Aug;52(2):334–339. doi: 10.1128/aem.52.2.334-339.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES