Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Sep;58(9):3000–3006. doi: 10.1128/aem.58.9.3000-3006.1992

Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions.

S W Dhawale 1, S S Dhawale 1, D Dean-Ross 1
PMCID: PMC183039  PMID: 1444413

Abstract

In order to delineate the roles of lignin and manganese peroxidases in the degradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium, the biodegradation of phenanthrene (chosen as a model for polycyclic aromatic hydrocarbons) was investigated. The disappearance of phenanthrene from the extracellular medium and mycelia was determined by using gas chromatography. The disappearance of phenanthrene from cultures of wild-type strains BKM-F1767 (ATCC 24725) and ME446 (ATCC 34541) under ligninolytic (low-nitrogen) as well as nonligninolytic (high-nitrogen) conditions was observed. The study was extended to two homokaryotic (basidiospore-derived) isolates of strain ME446. Both homokaryotic isolates, ME446-B19 (which produces lignin and manganese peroxidases only in low-nitrogen medium) and ME446-B5 (which totally lacks lignin and manganese peroxidase activities), caused the disappearance of phenanthrene when grown in low- as well as high-nitrogen media. Moreover, lignin and manganese peroxidase activities were not detected in any of the cultures incubated in the presence of phenanthrene. Additionally, the mineralization of phenanthrene was observed even under nonligninolytic conditions. The results collectively indicate that lignin and manganese peroxidases are not essential for the degradation of phenanthrene by P. chrysosporium. The observation that phenanthrene degradation occurs under nonligninolytic conditions suggests that the potential of P. chrysosporium for degradation of certain environmental pollutants is not limited to nutrient starvation conditions.

Full text

PDF
3000

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bumpus J. A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1989 Jan;55(1):154–158. doi: 10.1128/aem.55.1.154-158.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bumpus J. A., Brock B. J. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1988 May;54(5):1143–1150. doi: 10.1128/aem.54.5.1143-1150.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cavalieri E. L., Rogan E. G., Roth R. W., Saugier R. K., Hakam A. The relationship between ionization potential and horseradish peroxidase/hydrogen peroxide-catalyzed binding of aromatic hydrocarbons to DNA. Chem Biol Interact. 1983 Oct 15;47(1):87–109. doi: 10.1016/0009-2797(83)90150-3. [DOI] [PubMed] [Google Scholar]
  4. Cerniglia C. E., Campbell W. L., Freeman J. P., Evans F. E. Identification of a novel metabolite in phenanthrene metabolism by the fungus Cunninghamella elegans. Appl Environ Microbiol. 1989 Sep;55(9):2275–2279. doi: 10.1128/aem.55.9.2275-2279.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cerniglia C. E., Yang S. K. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol. 1984 Jan;47(1):119–124. doi: 10.1128/aem.47.1.119-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cripps C., Bumpus J. A., Aust S. D. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol. 1990 Apr;56(4):1114–1118. doi: 10.1128/aem.56.4.1114-1118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fernando T., Bumpus J. A., Aust S. D. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol. 1990 Jun;56(6):1666–1671. doi: 10.1128/aem.56.6.1666-1671.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986 Dec 25;261(36):16948–16952. [PubMed] [Google Scholar]
  9. Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986 Dec 25;261(36):16948–16952. [PubMed] [Google Scholar]
  10. Kennedy D. W., Aust S. D., Bumpus J. A. Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol. 1990 Aug;56(8):2347–2353. doi: 10.1128/aem.56.8.2347-2353.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mileski G. J., Bumpus J. A., Jurek M. A., Aust S. D. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1988 Dec;54(12):2885–2889. doi: 10.1128/aem.54.12.2885-2889.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Raeder U., Thompson W., Broda P. Genetic factors influencing lignin peroxidase activity in Phanerochaete chrysosporium ME446. Mol Microbiol. 1989 Jul;3(7):919–924. doi: 10.1111/j.1365-2958.1989.tb00241.x. [DOI] [PubMed] [Google Scholar]
  13. Sutherland J. B., Selby A. L., Freeman J. P., Evans F. E., Cerniglia C. E. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol. 1991 Nov;57(11):3310–3316. doi: 10.1128/aem.57.11.3310-3316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES